Mixed-Mode Fracture Criteria for Reliability Analysis and Design With Structural Ceramics

[+] Author and Article Information
D. K. Shetty

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112

J. Eng. Gas Turbines Power 109(3), 282-289 (Jul 01, 1987) (8 pages) doi:10.1115/1.3240037 History: Received February 05, 1987; Online October 15, 2009


Increasing use of ceramics in structural applications has led to the development of a probabilistic design methodology that combines three elements: linear elastic fracture mechanics theory that relates strengths of ceramics to size, shape, and orientation of critical flaws, a characteristic flaw size distribution function that accounts for the size effect on strength via the weakest-link concept, and a time-dependent strength caused by subcritical crack growth or other mechanisms. This paper reviews recent research that has been focused on the first of the above three elements, the investigation of fracture criteria for arbitrarily oriented flaws in ceramics, i.e., the mixed-mode fracture problem in linear elastic fracture mechanics theory. Experimental results obtained with two-dimensional through cracks and three-dimensional surface (indentation) cracks are summarized and compared to mixed-mode fracture criteria. The effects of material microstructure and the stress state on mixed-mode fractures are discussed. The application of mixed-mode fracture criteria in reliability analysis is illustrated for several simple stress states in the absence of time-dependent strength degradation.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In