Parametric Analysis of the Kalina Cycle

[+] Author and Article Information
C. H. Marston

Department of Mechanical Engineering, Villanova University, Villanova, PA 19085

J. Eng. Gas Turbines Power 112(1), 107-116 (Jan 01, 1990) (10 pages) doi:10.1115/1.2906464 History: Received February 01, 1989; Online April 24, 2008


The Kalina Cycle utilizes a mixture of ammonia and water as the working fluid in a vapor power cycle. When the liquid mixture is heated the more volatile ammonia tends to vaporize first and at a lower temperature than does pure water. This property of ammonia-water mixtures makes possible a better match to the enthalpy-temperature curve of a hot gas heat source such as a gas turbine exhaust and also permits circulation of fluids of different composition in different parts of the cycle. Taking advantage of the latter feature, condensation (absorption) can be done at slightly above atmospheric pressure with a low concentration of ammonia, while heat input is at a higher concentration for optimum cycle performance. Computer models have been used to optimize a simplified form of the cycle and to compare results for a more complex version proposed by El-Sayed and Tribus. A method of balancing the cycle was developed and key parameters for optimizing the cycle identified.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In