Three-Dimensional Computations of Flow and Fuel Injection in an Engine Intake Port

[+] Author and Article Information
T.-W. Kuo, S. Chang

Engine Research Department, General Motors Research Laboratories, Warren, MI 48090

J. Eng. Gas Turbines Power 113(3), 427-432 (Jul 01, 1991) (6 pages) doi:10.1115/1.2906248 History: Received September 01, 1990; Online April 24, 2008


An existing multidimensional in-cylinder flow code, KIVA, was modified to calculate gas flow and fuel injection in a simplified (no valve stem and simplified valve-head geometry) engine intake port. A single-cylinder engine simulation program was used to specify the initial and boundary conditions for flow calculations. A previously developed spray model was also used to simulate pressure-atomized spray with isooctane as the fuel. Three cases with increasing degrees of complexity were considered: (1) an impulsively started port flow with both port ends open (the inlet-boundary velocity was changed from zero to a finite value at the start of computation), (2) an impulsively started port flow with one port end partially blocked to simulate gas flow through the valve annulus, and (3) port flow driven by the time-varying gas flow rate through the valve annulus calculated using a single-cylinder engine simulation program. A spray calculation was also made for each case. The calculations indicate that the KIVA code can be modified to conduct computations with complicated port geometries and open flow boundary conditions. The results also indicate that both gas flow and fuel-injection processes and port geometry have a strong influence on the details of fuel induction into the cylinder. This confirms that consideration of both gas flow and fuel-injection processes is necessary in order to understand the mechanisms of fuel-air mixing in an engine intake port employing port fuel injection.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In