A Momentum-Integral Analysis of the Three-Dimensional Turbine End-Wall Boundary Layer

[+] Author and Article Information
R. P. Dring

United Aircraft Corp., Pratt & Whitney Aircraft Division, East Hartford, Conn.

J. Eng. Power 93(4), 386-396 (Oct 01, 1971) (11 pages) doi:10.1115/1.3445597 History: Received December 04, 1970; Online July 14, 2010


An analysis is presented which is a combination of existing momentum-integral equations and existing studies of profile shapes for incompressible three-dimensional turbulent boundary layers. These, along with a number of suitable refinements and assumptions, result in a solution technique which is particularly well suited for turbine end-wall boundary layer calculations. The solution gives the distribution of the boundary layer thickness and skewing over the end-wall as well as the amount and flux of total pressure deficit of the flow leaving the end-wall at the suction surface corner. The analysis also disclosed that a shear term which is normally neglected in the boundary layer approximations must in fact be retained, at least in approximate form, in order to insure the stability of the integral equations.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In