Energy Considerations in Twin-Fluid Atomization

[+] Author and Article Information
A. H. Lefebvre

Atomization and Spray Laboratory, Thermal Science and Propulsion Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Eng. Gas Turbines Power 114(1), 89-96 (Jan 01, 1992) (8 pages) doi:10.1115/1.2906311 History: Received December 13, 1989; Online April 24, 2008


With certain types of prefilming airblast atomizers, the manner in which the atomizing air impinges on the liquid sheet prohibits the wave formation that normally precedes the breakup of a liquid sheet into drops. Instead, the liquid is shattered almost instantaneously into drops of various sizes. This prompt atomization process is characterized by a broad range of drop sizes in the spray and by a lack of sensitivity of mean drop size to variations in liquid viscosity, atomizing air pressure, and initial liquid sheet thickness. Evidence is presented to show that which of these two different modes of atomization will occur in any given flow situation is largely dependent on the angle at which the atomizing air impinges on the liquid sheet. An equation for mean drop size, derived from the assumption that the main factor controlling prompt atomization is the ratio of the energy required for atomization to the kinetic energy of the atomizing air, is shown to provide a good fit to experimental data acquired from atomization studies on water and heating oil, carried out over wide ranges of air velocity, air/liquid ratio, and ambient air pressure.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In