Aerodynamics of Bluff-Body Stabilized Confined Turbulent Premixed Flames

[+] Author and Article Information
J. C. Pan, M. D. Vangsness, D. R. Ballal

University of Dayton, Dayton, OH 45469

J. Eng. Gas Turbines Power 114(4), 783-789 (Oct 01, 1992) (7 pages) doi:10.1115/1.2906657 History: Received March 04, 1991; Online April 24, 2008


Detailed information on the influence of geometric and flow parameters on the structure and properties of recirculation zone in confined combusting flows is not available. In this paper, recirculation zone structure and turbulence properties of methane-air mixtures downstream of several conical flameholders were measured using LDA. These tests employed different blockage ratios (13 and 25 percent), cone angles (30, 45, 60, and 90 deg), equivalence ratios (0.56, 0.65, 0.8, and 0.9), mean annular velocities (10, 15, and 20 m/s), and approach turbulence levels (2, 17, and 22 percent). It was found that increasing the blockage ratio and cone angle affected the recirculation zone size and shape only slightly. Also, these parameters increased the shear stress and turbulent kinetic energy (TKE) moderately. Increasing the equivalence ratio or approach turbulence intensity produced a recirculation zone shape very similar to that found in the cold flow. TKE decreased due to turbulent dilatation produced by increased heat release. These observations are discussed from the viewpoint of their importance to practical design and combustion modeling.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In