Reliability Analysis of Ceramic Matrix Composite Laminates

[+] Author and Article Information
D. J. Thomas, R. C. Wetherhold

Department of Mechanical and Aerospace Engineering, State University of New York, Buffalo, NY 14260

J. Eng. Gas Turbines Power 115(1), 117-121 (Jan 01, 1993) (5 pages) doi:10.1115/1.2906665 History: Received March 04, 1991; Online April 24, 2008


At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or noninteractive, allows for the evaluation of the lamina reliability under a given stress state. Using a noninteractive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occurs. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models, which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In