A Novel High-Temperature Ejector-Topping Power Cycle

[+] Author and Article Information
B. Z. Freedman, N. Lior

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315

J. Eng. Gas Turbines Power 116(1), 1-7 (Jan 01, 1994) (7 pages) doi:10.1115/1.2906793 History: Received October 21, 1991; Revised June 22, 1992; Online April 24, 2008


A novel, patented topping power cycle is described that takes its energy from a very high-temperature heat source and in which the temperature of the heat sink is still high enough to operate another, conventional power cycle. The top temperature heat source is used to evaporate a low saturation pressure liquid, which serves as the driving fluid for compressing the secondary fluid in an ejector. Due to the inherently simple construction of ejectors, they are well suited for operation at temperatures higher than those that can be used with gas turbines. The gases exiting from the ejector transfer heat to the lower temperature cycle, and are separated by condensing the primary fluid. The secondary gas is then used to drive a turbine. For a system using sodium as the primary fluid and helium as the secondary fluid, and using a bottoming Rankine steam cycle, the overall thermal efficiency can be at least 11 percent better than that of conventional steam Rankine cycles.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In