Numerical Simulation of the Flow Field Around Supersonic Air-Intakes

[+] Author and Article Information
G. Freskos

CERFACS, 42 av. Coriolis, 31057 Toulouse, France

O. Penanhoat

SNECMA Villaroche Center, 77550 Moissy-Cramayel, France

J. Eng. Gas Turbines Power 116(1), 116-123 (Jan 01, 1994) (8 pages) doi:10.1115/1.2906780 History: Received February 21, 1992; Online April 24, 2008


The demand for efficiency in today’s and in future civil aircraft is such that experimental studies alone do not suffice to optimize aircraft aerodynamics. In this context, much effort has been spent in the past decade to develop numerical methods capable of reproducing the phenomena that occur in the engine flow field. This paper presents some studies in Computational Fluid Dynamics related to supersonic inlets. Two approaches are considered. First, there is a need for a code capable of calculating in a cost-efficient way the entire flow field around a two-dimensional or three-dimensional inlet, e.g., to perform parametric studies. To this effect, a computing method based on grid construction by mesh generator dedicated to inlet shapes and on the discretization of the unsteady Euler equations with an explicit upwind scheme was developed. The treatment of complex geometries led us to adopt a multiblock grid approach. Therefore particular attention was paid to the treatment of the boundary conditions between the different domains. Second, there is a need for a code that can capture local phenomena in order to get a better understanding of inlet behavior (shock/shock, shock/boundary layer interactions, etc.). To this effect a two-dimensional turbulent Navier-Stokes code is used. The two-equation k -ε turbulence model included in the program seems to be one of the most successful models for calculating flow realistically. Correction of the near-wall influence extends its capability to complex flow configurations, e.g., those with separated zones.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In