Powder Metallurgy Repair of Turbine Components

[+] Author and Article Information
K. A. Ellison, P. Lowden, J. Liburdi

Liburdi Engineering Ltd. Hamilton, Ontario, Canada

J. Eng. Gas Turbines Power 116(1), 237-242 (Jan 01, 1994) (6 pages) doi:10.1115/1.2906799 History: Received February 24, 1992; Online April 24, 2008


An advanced powder metallurgy repair process called Liburdi Powder Metallurgy (LPM) has been developed for the repair, overlay or joining of nickel and cobalt-based high-temperature alloys. This process involves mechanical cleaning, followed by the application and consolidation of a filler metal powder, which has substantially the same composition as the base metal, and produces joints with mechanical properties similar to those of the parent material. While previously activated braze or “wide-gap” repair processes have been limited to clearances of approximately 1 mm, the LPM technique has the ability to bridge larger gaps of over 5 mm. In addition, the LPM joints contain significantly lower concentrations of melting point depressants such as silicon and boron than conventional wide-gap repair techniques and exhibit superior microstructural features. The characteristics and typical applications of the LPM process for blade and vane repairs are highlighted and the results of laboratory and engine tests are discussed.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In