RESEARCH PAPERS: Advanced Energy Systems

Reduction of Combustion Irreversibility in a Gas Turbine Power Plant Through Off-Gas Recycling

[+] Author and Article Information
S. P. Harvey, H. J. Richter

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755

K. F. Knoche

University of Aachen (RWTH), Aachen, Germany

J. Eng. Gas Turbines Power 117(1), 24-30 (Jan 01, 1995) (7 pages) doi:10.1115/1.2812776 History: Revised June 01, 1993; Online November 19, 2007


Combustion in conventional fossil-fueled power plants is highly irreversible, resulting in poor overall energy conversion efficiency values (less than 40 percent in many cases). The objective of this paper is to discuss means by which this combustion irreversibility might be reduced in gas turbine power cycles, and the conversion efficiency thus improved upon. One such means is thermochemical recuperation of exhaust heat. The proposed cycle recycles part of the exhaust gases, then mixes them with fuel prior to injection into a reformer. The heat required for the endothermic reforming reactions is provided by the hot turbine exhaust gases. Assuming state-of-the-art technology, and making a number of simplifying assumptions, an overall efficiency of 65.4 percent was attained for the cycle, based on the lower heating value (LHV) of the methane fuel. The proposed cycle is compared to a Humid Air Turbine (HAT) cycle with similar features that achieves an overall efficiency of 64.0 percent. The gain in cycle efficiency that can be attributed to the improved fuel oxidation process is 1.4 percentage points. Compared to current high-efficiency gas turbine cycles, the high efficiency of both cycles studied therefore results mainly from the use of staged compression and expansion with intermediate cooling and reheating, respectively.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In