RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Effects of Oxygen and Additives on the Thermal Stability of Jet Fuels

[+] Author and Article Information
S. P. Heneghan, C. R. Martel, T. F. Williams, D. R. Ballal

University of Dayton, Research Institute, Dayton, OH 45469-0140

J. Eng. Gas Turbines Power 117(1), 120-124 (Jan 01, 1995) (5 pages) doi:10.1115/1.2812759 History: Received March 01, 1993; Online November 19, 2007


A previously developed flowing single-pass heat-exchanger test rig (Phoenix rig) has been used to evaluate the effectiveness of various additives and the kinetic mechanism of both deposit formation and oxygen consumption. The Phoenix rig has been modified to include not just a heated single tube, but also a cooling test section and both hot and cold filters. The effects of flow conditions, antioxidants, and metal deactivator additives on the location and amount of the deposit are discussed. In general, antioxidants were effective at reducing the deposits on the hot test section, but almost invariably caused increased plugging of cool downstream filters. Downstream plugging of cool filters also increased with decreased temperatures in the heated section or with increased flow. Tests with both oxygen-saturated and oxygen-depleted fuels have shown that the solubility of oxygen is linearly related to the fraction of oxygen in a sparge gas, and that the amount of deposit is linearly related to the total quantity of dissolved oxygen passed. Finally, in contrast to initial modeling efforts, the consumption of oxygen is shown to be significantly more complex than a simple bimolecular, pseudo-first-order in oxygen, process. It is found to be much closer to pseudo-zero-order in the early stages, decaying to pseudo-first-order when the oxygen nears depletion.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In