RESEARCH PAPERS: Gas Turbines: Manufacturing and Materials

Load Control–Strain Control Isochronous Stress–Strain Curves for High Temperature Nonlinear Analysis

[+] Author and Article Information
G. S. Bechtel, T. S. Cook

GE Aircraft Engines, Cincinnati, OH 45215

J. Eng. Gas Turbines Power 117(2), 364-370 (Apr 01, 1995) (7 pages) doi:10.1115/1.2814103 History: Received March 01, 1993; Online November 19, 2007


Aircraft gas turbine components are subjected to severe operating conditions. High temperatures, large thermal strains, and mechanical loads combine to cause the material to undergo significant nonlinear behavior. In order to assure safe, durable components, it is necessary that analysis methods be available to predict the nonlinear deformation. General purpose finite element codes are available to perform elastic and viscoplastic analyses, but the analyses are expensive. Both large plastic and creep strain analyses can require significant computer resources, but typically a plastic solution is more economical to run than a time-stepping creep or viscoplastic model solution. For those applications where the deformation is principally time dependent, it is advantageous to include time-dependent creep effects in a “constant time” or “isochronous” analysis. Although this approach has been used in the past to estimate rupture life, this paper will present several significant new techniques for doing an isochronous analysis to analyze time-dependent deformation.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In