RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Flow Field and Performance Characteristics of Combustor Diffusers: A Basic Study

[+] Author and Article Information
R. Hestermann, S. Kim, A. Ben Khaled, S. Wittig

Lehrstuhl und Institut für Thermische Strömungsmaschinen, Universität Karlsruhe, Karlsruhe, Federal Republic of Germany

J. Eng. Gas Turbines Power 117(4), 686-694 (Oct 01, 1995) (9 pages) doi:10.1115/1.2815454 History: Received February 19, 1994; Online November 19, 2007


Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters on the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressure probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser’s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance—all other conditions held constant—an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In