A Detailed Transient Model of an OTEC Evaporator

[+] Author and Article Information
M. C. Chapman

Hermetic Motor Department, General Electric Co., Holland, Mich.

G. T. Heydt

Purdue Electric Power Center, Purdue University, West Lafayette, Ind.

J. Eng. Power 103(3), 539-544 (Jul 01, 1981) (6 pages) doi:10.1115/1.3230762 History: Received July 23, 1980; Online September 28, 2009


Ocean thermal energy conversion (OTEC) is a process in which a working fluid is alternately evaporated and condensed in heat exchangers fed by shallow and deep ocean water, respectively. The expansion of the working fluid permits extraction of useful work in a low pressure turbine. Models of the OTEC cycle often consider the evaporator and condenser units simply as having sufficient capacity (steady-state model) or with simple linear low-order models. In this paper, the evaporator is modeled in detail including the nonlinearities of two phase boiling, enthalpy-temperature relationship, and mixed phase fluid flow and heat exchange. The evaporator considered is of the cross-flow type using propane as the working fluid, however, the technique is valid for any channel configuration and working fluid provided that vertical flow exists in the working fluid. The model is used for transient studies in a wide range of working states.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In