RESEARCH PAPERS: Gas Turbines: Structures and Dynamics

Reduction of the Dynamic Load Capacity in a Squeeze Film Damper Operating With a Bubbly Lubricant

[+] Author and Article Information
S. E. Diaz, L. A. San Andrés

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

J. Eng. Gas Turbines Power 121(4), 703-709 (Oct 01, 1999) (7 pages) doi:10.1115/1.2818530 History: Received February 25, 1998; Revised June 23, 1999; Online December 03, 2007


Squeeze film dampers (SFDs) are effective means to reduce vibrations and to suppress instabilities in rotor-bearing systems. However, at operating conditions while traversing critical speeds with large orbital whirl motions, ingestion and entrapment of air into the thin lands of SFDs generates a bubbly mixture (air in lubricant) that is known to reduce the dynamic film pressures and the overall damping capability. This pervasive phenomenon lacks proper physical understanding and sound analytical modeling. An experimental investigation to quantify the forced performance of a SFD operating with a controlled bubbly mixture is detailed. Tests are conducted in a constrained circular orbit SFD to measure the dynamic squeeze film pressures and journal motion at two whirl frequencies (8.33 and 16.67 Hz) as the air content in the mixture increases from 0 percent to 100 percent. The analysis of period-averaged film pressures reveals a zone of uniform low pressure of magnitude equal to the discharge pressure, independently of the mixture composition. The uniform pressure zone extends as the mixture void fraction increases. Radial and tangential film forces are estimated from the dynamic pressures at two axial locations of measurement. The tangential (damping) force decreases proportionally with the mixture volume fraction, while a radial hydrostatic force remains nearly invariant. The experimental results quantify effects previously known by qualitative description only, thus providing a benchmark towards the development of sound theoretical models.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In