TECHNICAL PAPERS: Gas Turbines: Microturbines and Small Turbomachinery

Conjugate Flow and Heat Transfer Investigation of a Turbo Charger

[+] Author and Article Information
Dieter Bohn

Institute of Steam and Gas Turbines, Aachen University of Technology, Templergraben 55, D-52056 Aachen, Germanye-mail: post-bohn@idg.rwth-aachen.de

Tom Heuer

Borg Warner Turbo Systems GmbH, Marnheimer Str. 85/87, D-67292 Kirchheimbolanden, Germanye-mail: heu@turbos-bwauto.de

Karsten Kusterer

B&B-AGEMA, Gesellschaft für Energietechnische Maschinen und Anlagen GmbH, Jülicher Str. 338, D-52070 Aachen, Germanye-mail: kusterer@bub-agema.de

J. Eng. Gas Turbines Power 127(3), 663-669 (Jun 24, 2005) (7 pages) doi:10.1115/1.1839919 History: Received October 01, 2002; Revised March 01, 2003; Online June 24, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Bulaty, T., 1974, “Spezielle Probleme der schrittweisen Ladungswechselrechnung bei Verbrennungsmotoren mit Abgasturboladern,” MTZ 35, 6, pp. 177–185.
Rautenberg, M., Mobarak, A., and Malobabic, M., 1983, “Influence of Heat Transfer Between Turbine and Compressor on the Performance of Small Turbochargers,” JSME Paper 83-TOKYO-IGTC-73, Int. Gas Turbine Congress.
Rautenberg, M., and Kämmer, N., 1984, “On the Thermodynamics of Non-Adiabatic Compression and Expansion Process in Turbomachines,” ICMPE, Proceedings of the 5th International Conference for Mechanical Power Engineering, Cairo, Egypt.
Malobabic, M., 1989, “Das Betriebsverhalten Leitschaufel- und bypassgeregelter PKW-Abgasturbolader,” Ph.D. thesis, University of Hannover, Germany.
Bohn, D., and Bonhoff, B., 1994, “Berechnung der Kühl- und Störwirkung eines filmgekühlten transsonisch durchströmten Turbinengitters mit diabaten Wänden,” VDI-Berichte 1109, pp. 261–275.
Bohn, D., Bonhoff, B., Schönenborn, H., and Wilhelmi, H., 1995, “Prediction of the Film-Cooling Effectiveness of Gas Turbine Blades Using a Numerical Model for the Coupled Simulation of Fluid Flow and Diabatic Walls,” AIAA Paper 95-7105.
Bohn, D., Krüger, U., and Kusterer, K., 2001, “Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes,” Heat Transfer in Gas Turbines, B. Sunden and M. Faghri, eds., WIT Press, Southampton, pp. 58–108.
Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-257.
Bohn, D., and Schönenborn, H., 1996, “3-D Coupled Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane,” Proceedings of the 19th ICTAM, Kyoto, Japan.
Bohn, D., Bonhoff, B., and Schönenborn, H., 1995, “Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane,” IGTC Paper 108, Proceedings of the 1995 Yokohama International Gas Turbine Congress.
Bohn, D., and Heuer, T., 2001, “Conjugate Flow and Heat Transfer Calculation of a High Pressure Turbine Nozzle Guide Vane,” AIAA Paper 2001-3304.
Kao, K.-H., and Liou, M.-S., 1996, “On the Application of Chimera/Unstructured Hybrid Grids for the Conjugate Heat Transfer,” ASME Paper 96-GT-156.
Han, Z.-X., Dennis, B. H., and Dulikravich, G. S., 2000, “Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material,” ASME Paper 2000-GT-253.
Montenay, A., Paté, L., and Duboué, J. M., 2000, “Conjugate Heat Transfer Analysis of an Engine Internal Cavity,” ASME Paper 2000-GT-282.
Li, H., and Kassab, A. J., 1994, “Numerical Prediction of Fluid Flow and Heat Transfer in Turbine Blades With Internal Cooling,” AIAA Paper 94-2933.
Li, H., and Kassab, A. J., 1994, “A Coupled FVM/BEM Solution to Conjugate Heat Transfer in Turbine Blades,” AIAA Paper 94-1981.
Bohn, D., 2003, “Conjugate Flow and Heat Transfer Investigation of a Turbo Charger: Part II: Experimental Results,” ASME Paper 2003-38449.


Grahic Jump Location
Compression process in a compressor
Grahic Jump Location
Surface temperature distribution
Grahic Jump Location
Temperature distribution—longitudinal section (ṁC/ṁC,ref=1,ϑoT,1o,ref=1,n/nref=1)
Grahic Jump Location
Compressor geometry and positioning of cutting planes for thermal evaluation (Figs. 78910)
Grahic Jump Location
Compressor heat flux solid body↔fluid ṁC/ṁC,ref=1,ϑoT,1o,ref=1
Grahic Jump Location
Compressor heat flux solid body↔fluid ṁC/ṁC,ref=1,ϑoT,1o,ref<1
Grahic Jump Location
Compressor heat flux solid body↔fluid ṁC/ṁC,ref=1,ϑoT,1o,ref=1
Grahic Jump Location
Compressor heat flux solid body↔fluid ṁC/ṁC,ref=1,ϑoT,1o,ref>1
Grahic Jump Location
Temperature differences between inlet and outlet of compressor and turbine
Grahic Jump Location
Compressor: geometry parameters
Grahic Jump Location
Compressor: ReC–NuC-diagram
Grahic Jump Location
Compressor: mC–QC-diagram
Grahic Jump Location
Refined model of the compression process



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In