Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Influence of Heat Transfer and Material Temperature on Combustion Instabilities in a Swirl Burner

[+] Author and Article Information
Christian Kraus

Institut de Mécanique des Fluides de Toulouse,
Toulouse 31400, France
e-mail: christian.kraus@imft.fr

Laurent Selle, Thierry Poinsot

Institut de Mécanique des Fluides de Toulouse,
Toulouse 31400, France

Christoph M. Arndt

Institute of Combustion Technology,
German Aerospace Center (DLR),
Stuttgart 70569, Germany

Henning Bockhorn

Combustion Technology,
Karlsruhe Institute of Technology,
Karlsruhe 76131, Germany

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 4, 2016; final manuscript received August 30, 2016; published online December 21, 2016. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(5), 051503 (Dec 21, 2016) (10 pages) Paper No: GTP-16-1303; doi: 10.1115/1.4035143 History: Received July 04, 2016; Revised August 30, 2016

The current work focuses on the large eddy simulation (LES) of combustion instability in a laboratory-scale swirl burner. Air and fuel are injected at ambient conditions. Heat conduction from the combustion chamber to the plenums results in a preheating of the air and fuel flows above ambient conditions. The paper compares two computations: In the first computation, the temperature of the injected reactants is 300 K (equivalent to the experiment) and the combustor walls are treated as adiabatic. The frequency of the unstable mode (≈ 635 Hz) deviates significantly from the measured frequency (≈ 750 Hz). In the second computation, the preheating effect observed in the experiment and the heat losses at the combustion chamber walls are taken into account. The frequency (≈ 725 Hz) of the unstable mode agrees well with the experiment. These results illustrate the importance of accounting for heat transfer/losses when applying LES for the prediction of combustion instabilities. Uncertainties caused by unsuitable modeling strategies when using computational fluid dynamics for the prediction of combustion instabilities can lead to an improper design of passive control methods (such as Helmholtz resonators) as these are often only effective in a limited frequency range.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Lieuwen, T. , Chang, M. , and Amato, A. , 2013, “ Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations,” Combust. Flame, 160(8), pp. 1311–1314. [CrossRef]
Lieuwen, T. , 2012, Unsteady Combustor Physics, Cambridge University Press, Cambridge, UK.
Hernández, I. , Staffelbach, G. , Poinsot, T. , Román Casado, J. C. , and Kok, J. B. , 2013, “ LES and Acoustic Analysis of Thermo-Acoustic Instabilities in a Partially Premixed Model Combustor,” C. R. Méc., 341(1–2), pp. 121–130. [CrossRef]
Roux, S. , Lartigue, G. , Poinsot, T. , Meier, U. , and Bérat, C. , 2005, “ Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations,” Combust. Flame, 141(1–2), pp. 40–54. [CrossRef]
Hermeth, S. , Staffelbach, G. , Gicquel, L. , and Poinsot, T. , 2013, “ LES Evaluation of the Effects of Equivalence Ratio Fluctuations on the Dynamic Flame Response in a Real Gas Turbine Combustion Chamber,” Proc. Combust. Inst., 34(2), pp. 3165–3173. [CrossRef]
Ghani, A. , Poinsot, T. , Gicquel, L. , and Staffelbach, G. , 2015, “ LES of Longitudinal and Transverse Self-Excited Combustion Instabilities in a Bluff-Body Stabilized Turbulent Premixed Flame,” Combust. Flame, 162(11), pp. 4075–4083. [CrossRef]
Staffelbach, G. , Gicquel, L. , Boudier, G. , and Poinsot, T. , 2009, “ Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors,” Proc. Combust. Inst., 32(2), pp. 2909–2916. [CrossRef]
Nicoud, F. , Benoit, L. , Sensiau, C. , and Poinsot, T. , 2007, “ Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames,” AIAA J., 45(2), pp. 426–441. [CrossRef]
Emmert, T. , Bomberg, S. , and Polifke, W. , 2013, “ Intrinsic Thermoacoustic Instability of Premixed Flames,” Combust. Flame, 162(1), pp. 75–85. [CrossRef]
Hoeijmakers, M. , Kornilov, V. , Lopez Arteaga, I. , de Goey, P. , and Nijmeijer, H. , 2014, “ Intrinsic Instability of Flame-Acoustic Coupling,” Combust. Flame, 161(11), pp. 2860–2867. [CrossRef]
Courtine, E. , Selle, L. , and Poinsot, T. , 2015, “ DNS of Intrinsic ThermoAcoustic Modes in Laminar Premixed Flames,” Combust. Flame, 162(11), pp. 4331–4341. [CrossRef]
Duchaine, F. , Boudy, F. , Durox, D. , and Poinsot, T. , 2011, “ Sensitivity Analysis of Transfer Functions of Laminar Flames,” Combust. Flame, 158(12), pp. 2384–2394. [CrossRef]
Lohrmann, M. , and Büchner, H. , 2005, “ Prediction of Stability Limits for Lp and Lpp Gas Turbine Combustors,” Combust. Sci. Technol., 177(12), pp. 2243–2273. [CrossRef]
Kaess, R. , Polifke, W. , Poinsot, T. , Noiray, N. , Durox, D. , Schuller, T. , and Candel, S. , 2008, “ CFD-Based Mapping of the Thermo-Acoustic Stability of a Laminar Premix Burner,” Center for Turbulence Research 2008 Summer Program, pp. 289–302. https://www.researchgate.net/profile/Thierry_Schuller/publication/237419872_CFD-based_mapping_of_the_thermo-acoustic_stability_of_a_laminar_premix_burner/links/53eb50a60cf28f342f452d28.pdf
Mejia, D. , Selle, L. , Bazile, R. , and Poinsot, T. , 2014, “ Wall-Temperature Effects on Flame Response to Acoustic Oscillations,” Proc. Combust. Inst., 35(3), pp. 3201–3208. [CrossRef]
Hong, S. , Shanbhogue, S. J. , Kedia, K. S. , and Ghoniem, A. F. , 2013, “ Impact of the Flame-Holder Heat-Transfer Characteristics on the Onset of Combustion Instability,” Combust. Sci. Technol., 185(10), pp. 1541–1567. [CrossRef]
Yi, T. , and Santavicca, D. A. , 2010, “ Flame Transfer Functions for Liquid-Fueled Swirl-Stabilized Turbulent Lean Direct Fuel Injection Combustion,” ASME J. Eng. Gas Turbines Power, 132(2), p. 021506. [CrossRef]
Hassa, C. , Heinze, J. , and Stursberg, K. , 2003, “ Investigation of the Response of an Air Blast Atomizer Combustion Chamber Configuration on Forced Modulation of Air Feed at Realistic Operating Conditions,” ASME J. Eng. Gas Turbines Power, 125(4), p. 872. [CrossRef]
Shahi, M. , Kok, J. B. , Roman Casado, J. , and Pozarlik, A. K. , 2015, “ Transient Heat Transfer Between a Turbulent Lean Partially Premixed Flame in Limit Cycle Oscillation and the Walls of a Can Type Combustor,” Appl. Therm. Eng., 81, pp. 128–139. [CrossRef]
Kraus, C. , and Bockhorn, H. , 2013, “ Experimental and Numerical Investigation of Combustion Instabilities in Swirl-Stabilized Flames Operated in Partially-Premixed Mode,” European Combustion Meeting, pp. P5–26.
Arndt, C. M. , Severin, M. , Dem, C. , Stöhr, M. , Steinberg, A. M. , and Meier, W. , 2015, “ Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements,” Exp. Fluids, 56(4), pp. 1–23. [CrossRef]
Lawson, N. J. , and Wu, J. , 1999, “ Three-Dimensional Particle Image Velocimetry: Experimental Error Analysis of a Digital Angular Stereoscopic System,” Meas. Sci. Technol., 8(12), pp. 1455–1464. http://iopscience.iop.org/article/10.1088/0957-0233/8/12/009/meta
Colin, O. , Ducros, F. , Veynante, D. , and Poinsot, T. , 2000, “ A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion,” Phys. Fluids, 12(2000), pp. 1843–1863. [CrossRef]
Legier, J. P. , Poinsot, T. , and Veynante, D. , 2000, “ Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion,” Center for Turbulence Research, Summer Program 2000, Stanford, CA, pp. 157–168. https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf]
Martin, C. , Benoit, L. , Nicoud, F. , Poinsot, T. , and Sommerer, Y. , 2006, “ Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor,” AIAA J., 44(4), pp. 741–750. [CrossRef]
Boileau, M. , Staffelbach, G. , Cuenot, B. , Poinsot, T. , and Berat, C. , 2008, “ LES of an Ignition Sequence in a Gas Turbine Engine,” Combust. Flame, 154(1–2), pp. 2–22. [CrossRef]
Schmitt, P. , Poinsot, T. , Schuermans, B. , and Geigle, K. P. , 2007, “ Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner,” J. Fluid Mech., 570, p. 17. [CrossRef]
Franzelli, B. , Riber, E. , Gicquel, L. Y. , and Poinsot, T. , 2012, “ Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame,” Combust. Flame, 159(2), pp. 621–637. [CrossRef]
Poinsot, T. J. , and Lele, S. , 1992, “ Boundary Conditions for Direct Simulations of Compressible Viscous Flows,” J. Comput. Phys., 101(1), pp. 104–129. [CrossRef]
Selle, L. , Nicoud, F. , and Poinsot, T. , 2004, “ Actual Impedance of Nonreflecting Boundary Conditions: Implications for Computation of Resonators,” AIAA J., 42(5), pp. 958–964. [CrossRef]
Levine, H. , and Schwinger, J. , 1948, “ On the Radiation of Sound From an Unflanged Circular Pipe,” Phys. Rev., 73(4), pp. 383–406. [CrossRef]
Peters, M. C. A. M. , Hirschberg, A. , Reijnen, A. J. , and Wijnands, A. P. J. , 1993, “ Damping and Reflection Coefficient Measurements for an Open Pipe at Low Mach and Low Helmholtz Numbers,” J. Fluid Mech., 256, p. 499. [CrossRef]
Gullaud, E. , Mendez, S. , Sensiau, C. , Nicoud, F. , and Poinsot, T. , 2009, “ Effect of Multiperforated Plates on the Acoustic Modes in Combustors,” C. R. Méc., 337(6–7), pp. 406–414. [CrossRef]
Mendez, S. , and Eldredge, J. , 2009, “ Acoustic Modeling of Perforated Plates With Bias Flow for Large-Eddy Simulations,” J. Comput. Phys., 228(13), pp. 4757–4772. [CrossRef]
Lee, S. H. , Ih, J. G. , and Peat, K. S. , 2007, “ A Model of Acoustic Impedance of Perforated Plates With Bias Flow Considering the Interaction Effect,” J. Sound Vib., 303(3–5), pp. 741–752. [CrossRef]
Schmitt, P. , 2006, “ Simulation aux grandes échelles de la combustion étagée dans les turbines à gaz et son interaction stabilité - polluants – thermique,” Ph.D thesis, INP Toulouse, Toulouse, France.
Zhou, R. , Balusamy, S. , Sweeney, M. S. , Barlow, R. S. , and Hochgreb, S. , 2013, “ Flow Field Measurements of a Series of Turbulent Premixed and Stratified Methane/Air Flames,” Combust. Flame, 160(10), pp. 2017–2028. [CrossRef]
Poinsot, T. , and Veynante, D. , 2011, Theoretical and Numerical Combustion, 3rd ed., CNRS, France.
Rayleigh, J. W. S. , 1878, “ The Explanation of Certain Acoustical Phenomena,” Nature, 18(455), pp. 319–321. [CrossRef]
Schuller, T. , 2003, “ Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners,” Combust. Flame, 135(4), pp. 525–537. [CrossRef]
Durox, D. , Moeck, J. P. , Bourgouin, J.-F. , Morenton, P. , Viallon, M. , Schuller, T. , and Candel, S. , 2013, “ Flame Dynamics of a Variable Swirl Number System and Instability Control,” Combust. Flame, 160(9), pp. 1729–1742. [CrossRef]
Palies, P. , Durox, D. , Schuller, T. , and Candel, S. , 2011, “ Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames,” Combust. Flame, 158(10), pp. 1980–1991. [CrossRef]
Durox, D. , Schuller, T. , Noiray, N. , and Candel, S. , 2009, “ Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries,” Proc. Combust. Inst., 32(1), pp. 1391–1398. [CrossRef]
Lauer, M. , and Sattelmayer, T. , 2010, “ On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames With Mixture Gradients,” ASME J. Eng. Gas Turbines Power, 132(6), p. 061502. [CrossRef]


Grahic Jump Location
Fig. 1

Swirl combustor with two air inlets and locations of microphone probes

Grahic Jump Location
Fig. 2

Cut of the mesh in the middle plane. The domain is separated at the boundary patches for the perforated plates. The corresponding patches are coupled with the modified Howe model.

Grahic Jump Location
Fig. 3

Modulus and phase of the reflection coefficient R of the combustion chamber outlet: —— Levine and Schwinger [31], – – – – AVBP with adequate relaxation coefficient

Grahic Jump Location
Fig. 4

Reference temperatures (Tref) and constant temperature (Tiso) for the modeling of the heat losses at the combustion chamber walls

Grahic Jump Location
Fig. 5

Axial locations of the extracted profiles

Grahic Jump Location
Fig. 6

Time-averaged mean velocities in the experiment (•) and the LESs of case 1 (——) and case 2 (— ◻ —); x = distance to nozzle outlet

Grahic Jump Location
Fig. 7

RMS of velocity fluctuations in the experiment (•) and the LESs of case 1 (——) and case 2 (— ◻ —); x = distance to nozzle outlet

Grahic Jump Location
Fig. 8

Temperature profiles in the LESs of case 1 (——) and case 2 (— ◻ —); x = distance to nozzle outlet

Grahic Jump Location
Fig. 9

Pressure spectra in the combustion chamber and the plenums in the experiment (——) and the LESs of case 1 (–. –. –) and case 2 (– – – –)

Grahic Jump Location
Fig. 10

Time signal of pressure at the probe in the combustion chamber (——) and the integral heat release rate (– – – –)

Grahic Jump Location
Fig. 11

Moduli and phases of the unstable modes in the LES of case 1 (f = 635 Hz, ) and the LES of case 2 (f = 725 Hz, •). Modulus and phase were extracted along the shown path in the outer plenum and the combustion chamber.

Grahic Jump Location
Fig. 12

Average heat release rates in the LESs of cases 1 and 2 (2D cut in the middle of the combustion chamber)

Grahic Jump Location
Fig. 13

Average line-of-sight integrated distributions of: the heat release rate in the LESs of cases 1 and 2 and the OH*-chemiluminescence of the flame in the experiment



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In