Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response

[+] Author and Article Information
Frederik M. Berger

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de

Tobias Hummel

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de

Michael Hertweck

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de

Jan Kaufmann

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: kaufmannjan@gmail.com

Bruno Schuermans

Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com

Thomas Sattelmayer

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 11, 2016; final manuscript received November 22, 2016; published online February 14, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(7), 071501 (Feb 14, 2017) (9 pages) Paper No: GTP-16-1323; doi: 10.1115/1.4035591 History: Received July 11, 2016; Revised November 22, 2016

This paper presents the experimental approach for determination and validation of noncompact flame transfer functions of high-frequency, transverse combustion instabilities observed in a generic lean premixed gas turbine combustor. The established noncompact transfer functions describe the interaction of the flame's heat release with the acoustics locally, which is necessary due to the respective length scales being of the same order of magnitude. Spatiotemporal dynamics of the flame are measured by imaging the OH chemiluminescence signal, phase-locked to the dynamic pressure at the combustor's front plate. Radon transforms provide a local insight into the flame's modulated reaction zone. Applied to different burner configurations, the impact of the unsteady heat release distribution on the thermoacoustic driving potential, as well as distinct flame regions that exhibit high modulation intensity, is revealed. Utilizing these spatially distributed transfer functions within thermoacoustic analysis tools (addressed in this joint publication's Part II) allows then to predict transverse linear stability of gas turbine combustors.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Schuermans, B. , Bothien, M. , Maurer, M. , and Bunkute, B. , 2015, “ Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/GT24 Reheat Combustors,” ASME Paper No. GT2015-42287.
O'Connor, J. , Acharya, V. , and Lieuwen, T. , 2015, “ Transverse Combustion Instabilities: Acoustic, Fluid-Mechanic, and Flame Processes,” Prog. Energy Combust. Sci., 49, pp. 1–39. [CrossRef]
Culick, F. E. C. , 2006, “ Unsteady Motions in Combustion Chambers for Propulsion Systems,” NATO Research and Technology Organisation, Brussels, Belgium, Technical Report No. AG-AVT-039.
Sattelmayer, T. , 2010, “ Grundlagen der verbrennung in stationären gasturbinen,” Stationäre Gasturbinen, 2. neu bearbeitete Auflage, Springer-Verlag, Berlin, pp. 397–452.
Lieuwen, T. , 2012, Unsteady Combustor Physics, Cambridge University Press, New York.
Schwing, J. , Noiray, N. , and Sattelmayer, T. , 2011, “ Interaction of Vortex Shedding and Transverse High-Frequency Pressure Oscillations in a Tubular Combustion Chamber,” ASME Paper No. GT2011-45246.
Schwing, J. , Grimm, F. , and Sattelmayer, T. , 2012, “ A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes,” ASME Paper No. GT2012-68775.
Schwing, J. , and Sattelmayer, T. , 2013, “ High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping,” ASME Paper No. GT2013-94064.
Zellhuber, M. , 2013, “ High Frequency Response of Auto-Ignition and Heat Release to Acoustic Perturbations,” Ph.D. thesis, Lehrstuhl für Thermodynamik, Technische Universität München, Munich, Germany.
Zellhuber, M. , Schwing, J. , Schuermans, B. , Sattelmayer, T. , and Polifke, W. , 2014, “ Experimental and Numerical Investigations of Thermoacoustic Sources Related to High-Frequency Instabilities,” Int. J. Spray Combust. Dyn., 6(1), pp. 1–34. [CrossRef]
Hummel, T. , Berger, F. , Hertweck, M. , Schuermans, B. , and Sattelmayer, T. , 2016, “ High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors, Part II: Modeling and Analysis,” ASME Paper No. GT2016-57500.
Schulze, M. , Hummel, T. , Klarmann, N. , Berger, F. , Schuermans, B. , and Sattelmayer, T. , 2016, “ Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors,” ASME Paper No. GT2016-57818.
Hummel, T. , Hammer, K. , Romero, P. , Schuermans, B. , and Sattelmayer, T. , 2016, “ Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors,” ASME Paper No. GT2016-57913.
Mayer, C. , Sangl, J. , Sattelmayer, T. , and Lachaux, T. , 2011, “ Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum,” ASME J. Eng. Gas Turbines Power, 133(7), p. 071501. [CrossRef]
Sangl, J. , Mayer, C. , and Sattelmayer, T. , 2011, “ Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions,” ASME J. Eng. Gas Turbines Power, 134(3), p. 031506.
Güthe, F. , and Schuermans, B. , 2007, “ Phase-Locking in Post-Processing for Pulsating Flames,” Meas. Sci. Technol., 18, pp. 1–7. [CrossRef]
Moeck, J. , Bourgouin, J.-F. , Durox, D. , Schuller, T. , and Candel, S. , 2013, “ Tomographic Reconstruction of Heat Release Rate Perturbations Induced by Helical Modes in Turbulent Swirl Flames,” Exp. Fluids, 54(4), pp. 1498–1515. [CrossRef]
Feldman, M. , 2011, “ Hilbert Transform in Vibration Analysis,” Mech. Syst. Signal Process., 25(3), pp. 735–802. [CrossRef]
Hardalupas, Y. , and Orain, M. , 2004, “ Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame,” Combust. Flame, 139(3), pp. 188–207. [CrossRef]
Lauer, M. , and Sattelmayer, T. , 2010, “ On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames With Mixture Gradients,” ASME J. Eng. Gas Turbines Power, 132(6), p. 061502. [CrossRef]
Klarmann, N. , Sattelmayer, T. , Geng, W. , and Magni, F. , 2016, “ Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation,” ASME Paper No. GT2016-57625.
Noiray, N. , and Schuermans, B. , 2013, “ On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers,” Proc. R. Soc. A, 469(2151), p. 20120535. [CrossRef]
Schimek, S. , Cosic, B. , Moeck, J. , Terhaar, S. , and Paschereit, C. , 2015, “ Amplitude-Dependent Flow Field and Flame Response to Axial and Tangential Velocity Fluctuations,” ASME J. Eng. Gas Turbines Power, 137(8), p. 081501. [CrossRef]
Schuermans, B. , 2003, “ Modelling and Control of Thermoacoustic Instabilities,” Ph.D. thesis, Ècole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.


Grahic Jump Location
Fig. 1

Schematic of the experimental setup with imaging unit and depiction of instrumentation ports on the faceplate

Grahic Jump Location
Fig. 2

Postprocessing procedure of the image and pressure time series

Grahic Jump Location
Fig. 3

(a) Hilbert transformed acoustic pressure and (b) simultaneously sampled image acquisition signals (II—image intensifier)

Grahic Jump Location
Fig. 4

Proportionality of measured OH CL intensity with thermal power

Grahic Jump Location
Fig. 5

Sample mean heat release and derived temperature distribution

Grahic Jump Location
Fig. 6

(a) Hilbert transformed pressure signal H(t) with envelopes and (b) distributions of H(t) ; (c) frequency spectrum of the raw pressure signal p(t); and (d) distribution of the envelope |H(t)|

Grahic Jump Location
Fig. 7

Low swirl phase averaged line-of-sight OH CL for high ϕk=0 and low ϕk=π oscillation amplitude at reference location

Grahic Jump Location
Fig. 8

Low swirl oscillating intensity 〈I′〉ϕk for r = [0, R] (circles) and r = [0, −R] (squares) phase-locked image half with standard errors (dashed curves)

Grahic Jump Location
Fig. 9

Phase and real part distribution of the tomographic reconstruction for the low swirl configuration heat release oscillation q˙′(x,r)

Grahic Jump Location
Fig. 10

(a) Computational results of displacement and density FTF for the low swirl configuration and (b) corresponding computational displacement and pressure field

Grahic Jump Location
Fig. 11

Experimental heat release oscillations for low (S1) and high (S2) swirl configurations compared to their numerical counterparts

Grahic Jump Location
Fig. 12

Heat release oscillation isocontour (solid line) and dynamic pressure distribution with dashed isocontour for low (S1) and high (S2) swirl configurations



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In