Research Papers: Gas Turbines: Vehicular and Small Turbomachines

System-Level Performance of Microturbines With an Inside-Out Ceramic Turbine

[+] Author and Article Information
Nidal Kochrad

Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nidal.Kochrad@USherbrooke.ca

Nicolas Courtois

Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nicolas.Courtois@USherbrooke.ca

Miguel Charette

Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Miguel.Charette@USherbrooke.ca

Benoit Picard

Ceragy Engines, Inc.,
Parc Innovation-ACELP,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: bpicard@ceragy.ca

Alexandre Landry-Blais

Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Alexandre.Landry-Blais@USherbrooke.ca

David Rancourt

Aerospace Systems Design Laboratory (ASDL),
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: David.Rancourt@gatech.edu

Jean-Sébastien Plante

Faculté de génie,
Université de Sherbrooke,
2500 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca

Mathieu Picard

Faculté de génie,
Université de Sherbrooke,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@USherbrooke.ca

1Corresponding author.

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received December 6, 2016; final manuscript received December 13, 2016; published online February 1, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(6), 062702 (Feb 01, 2017) (10 pages) Paper No: GTP-16-1573; doi: 10.1115/1.4035648 History: Received December 06, 2016; Revised December 13, 2016

Ceramic turbines can reduce fuel consumption by increasing turbine inlet temperatures (TIT). The need for heat-resistant materials like ceramics is particularly acute for small turbomachines for which efficiencies are limited by the use of uncooled metal turbine as complex cooling schemes are impractical and costly. Efforts to introduce ceramics in the turbine rotor were made between the 1960s and the 1990s by gas turbines and automotive manufacturers in the U.S., Europe, and Japan. While significant progress was made, a suitable level of reliability still cannot be achieved as the brittleness of ceramics leads to crack propagation in the blades loaded in tension and catastrophic failure. The inside-out ceramic turbine (ICT) is a design alternative specific to ceramics that loads the blades in compression by using an outer, air-cooled composite rim that sustains the centrifugal loads. This paper provides an analytical model based on the Brayton cycle to compute the system-level performance of microturbines using an ICT. Loss submodels specific to ICT architectures are developed to account for: (1) composite rim drag, (2) composite rim cooling, (3) leakage through rotating seals, and (4) expansion heat losses. The thermodynamic core model is validated against three state-of-the-art, non-inside-out, microturbines. Based on a Monte Carlo simulation that takes into account the modeling uncertainties, the model predicts a cycle efficiency of 45±1% for a 240 kW ICT-based microturbine, leading to a predicted reduction in fuel consumption of 20% over current all-metal microturbines.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Massardo, A. F. , McDonald, C. F. , and Korakianitis, T. , 2000, “ Microturbine/Fuel-Cell Coupling for High-Efficiency Electrical-Power Generation,” ASME J. Eng. Gas Turbines Power, 124(1), pp. 110–116. [CrossRef]
De Biasi, V. , 2014, “ Air-Cooled 7HA and 9HA Designs Rated at Over 61% Efficiency,” Gas Turbine World, 44(2), pp. 10–13.
Bevilacqua, L. A. , and Lightfoot, W. E. , 1985, “ Advanced Concepts in Small Helicopter Engine Air-Cooled Turbine Design,” Int. J. Turbo Jet Engines, 2(4), pp. 327–336. [CrossRef]
Energy and Environmental Analysis, Inc., 2003, “ Advanced Microturbine System: Market Assessment,” U.S. Department of Energy, Arlington, VA.
Roode, M. V. , Ferber, M. K. , and Richerson, D. W. , 2002, Ceramic Gas Turbine Design and Test Experience, ASME Press, New York.
Takehara, I. , Tatsumi, T. , and Ichikawa, Y. , 2002, “ Summary of CGT302 Ceramic Gas Turbine Research and Development Program,” ASME J. Eng. Gas Turbines Power, 124(3), pp. 627–635. [CrossRef]
Coty, P. J. , 1983 , “ Compression Structured Ceramic Turbine Rotor Concept,” Ceramics for High-Performance Applications III, E. M. Lenoe , R. N. Katz , and J. J. Burke , eds., Springer, New York, pp. 427–441.
Rudolf, M. H. E. , 1962, “ Axial Flow Gas Turbine,” U.S. Patent No. US3042366 A.
Kochendörfer, R. , 1979, “ Compression Loaded Ceramic Turbine Rotor,” 49th Meeting of the AGARD Structures and Materials Panel, Porz-Wahn, Köln, Germany, Oct. 8, pp. 22/1–22/19.
Dubois, P. K. , Landry, C. , Plante, J.-S. , and Picard, M. , 2017, “ Experimental Validation of the Structural Integrity of an Inside-Out Ceramic Gas Turbine Prototype,” ASME J. Eng. Gas Turbines Power (in press).
Courtois, N. , Ebacher, F. , Dubois, P. K. , Kochrad, N. , Landry, C. , Charette, M. , Landry-Blais, A. , Fréchette, L. , Plante, J.-S. , and Picard, M. , 2017, “ Superalloy Cooling System for the Composite Rim of an Inside-Out Ceramic Turbine,” ASME Paper No. GT2017-64007.
Landry, C. , Dubois, P. K. , Courtois, N. , Charron, F. , Picard, M. , and Plante, J.-S. , 2016, “ Development of an Inside-Out Ceramic Turbine,” ASME Paper No. GT2016-57041.
Brouillette, M. , and Plante, J.-S. , 2008, “ Rotary Ramjet Engine,” U.S. Patent No. US7337606 B2.
Vézina, G. , Fortier-Topping, H. , Bolduc-Teasdale, F. , Rancourt, D. , Picard, M. , Plante, J.-S. , Brouillette, M. , and Fréchette, L. , 2015, “ Design and Experimental Validation of a Supersonic Concentric Micro Gas Turbine,” ASME J. Turbomach., 138(2), p. 021007. [CrossRef]
Rancourt, D. , Picard, M. , Denninger, M. , Plante, J.-S. , Chen, J. , and Yousefpour, A. , 2012, “ Rim-Rotor Rotary Ramjet Engine—Part 1: Structural Design and Experimental Validation,” J. Propul. Power, 28(6), pp. 1293–1303. [CrossRef]
Picard, M. , Rancourt, D. , Plante, J.-S. , and Brouillette, M. , 2012, “ Rim-Rotor Rotary Ramjet Engine—Part 2: Quasi-One-Dimensional Aerothermodynamic Design,” J. Propul. Power, 28(6), pp. 1304–1314. [CrossRef]
Walsh, P. P. , and Fletcher, P. , 2004, Gas Turbine Performance, 2nd ed., Wiley, Hoboken, NJ.
Gordon, S. , and Mcbride, B. J. , 1976, “ Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman–Jouguet Detonations,” NASA Lewis Research Center, Cleveland, OH, Report No. N73-17724.
Smith, S. F. , 1965, “ A Simple Correlation of Turbine Efficiency,” J. Royal Aeronaut. Soc., 69, pp. 467–470. [CrossRef]
Dixon, S. L. , and Hall, C. A. , 2005, Fluid Mechanics and Thermodynamics of Turbomachinery, Butterworth–Heinemann, Oxford, UK.
Saravanamuttoo, H. I. C. , Cohen, H. , and Rogers, G. F. C. , 2001, “ Gas Turbine Design Procedure,” Gas Turbine Theory, Pearson, London.
Owen, J. M. , Zhou, K. , Pountney, O. , Wilson, M. , and Lock, G. , 2011, “ Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress,” ASME J. Turbomach., 134(3), p. 031012. [CrossRef]
Scanlon, T. , Wilkes, J. , Bohn, D. , and Gentilhomme, O. , 2004, “ A Simple Method for Estimating Ingestion of Annulus Gas Into a Turbine Rotor Stator Cavity in the Presence of External Pressure Variations,” ASME Paper No. GT2004-53097.
Neumann, K. , 1964, “ Zur Frage der Verwendung von Durchblickdichtungen im Dampfturbinenbau,” Maschinenbautechnik, 13(4), pp. 188–195.
Nakazawa, N. , Sasaki, M. , Nishiyama, T. , Iwai, M. , Katagiri, H. , and Handa, N. , 1997, “ Status of the Automotive Ceramic Gas Turbine Development Program—Seven Years' Progress,” ASME Paper No. 97-GT-383.
Goulburn, J. R. , and Wilson, J. H. , 1975, “ High Speed Disk Friction Losses in a Gaseous Medium,” Int. J. Mech. Sci., 17(6), pp. 379–385. [CrossRef]
General Electric Company, ed., Heat and Fluid Flow Data Book, Genium Publishing, New York, Sect. 408.
Çengel, Y. A. , 2002, Heat Transfer: A Practical Approach, 4th ed., McGraw-Hill, New York.
Hohloch, M. , Zanger, J. , Widenhorn, A. , and Aigner, M. , 2010, “ Experimental Characterization of a Micro Gas Turbine Test Rig,” ASME Paper No. GT2010-22799.
Capstone Turbine Corporation, 2008, “ Advanced MicroTurbine System (AMTS): C200 MicroTurbine, Ultra-Low Emissions MicroTurbine,” Capstone Turbine Corp., Los Angeles, CA, Technical Report No. DE-FC26-00CH11058.


Grahic Jump Location
Fig. 2

Microturbine components and station numbering

Grahic Jump Location
Fig. 1

Inside-out ceramic turbine (ICT)

Grahic Jump Location
Fig. 3

Calculation flowchart

Grahic Jump Location
Fig. 4

The expansion process flowchart

Grahic Jump Location
Fig. 5

Turbine cross section, radial characteristics dimensions, and seal locations 1, 2, and 3

Grahic Jump Location
Fig. 6

Unwrapped blades and cooling system

Grahic Jump Location
Fig. 7

Rotating seal leakages

Grahic Jump Location
Fig. 10

Microturbine thermofluid quantities

Grahic Jump Location
Fig. 11

Cycle performance and losses impact prediction

Grahic Jump Location
Fig. 9

Efficiency distribution from the Monte Carlo simulation



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In