Research Papers: Gas Turbines: Turbomachinery

Aeroacoustic Analysis of Low-Speed Axial Fans With Different Rotational Speeds in the Design Point

[+] Author and Article Information
Patrick Buchwald

Institute of Thermal Turbomachinery and
Machinery Laboratory (ITSM),
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: buchwald@itsm.uni-stuttgart.de

Damian M. Vogt

Institute of Thermal Turbomachinery and
Machinery Laboratory (ITSM),
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: damian.vogt@itsm.uni-stuttgart.de

Julien Grilliat

ebm-papst St. Georgen GmbH & Co. KG,
St. Georgen 78112, Germany
e-mail: julien.grilliat@de.ebmpapst.com

Wolfgang Laufer

ebm-papst St. Georgen GmbH & Co. KG,
St. Georgen 78112, Germany
e-mail: wolfgang.laufer@de.ebmpapst.com

Michael B. Schmitz

ebm-papst St. Georgen GmbH & Co. KG,
St. Georgen 78112, Germany
e-mail: michael.b.schmitz@siemens.com

Andreas Lucius

ebm-papst Mulfingen GmbH & Co. KG,
Mulfingen 74673, Germany
e-mail: andreas.lucius@de.ebmpapst.com

Marc Schneider

ebm-papst Mulfingen GmbH & Co. KG,
Mulfingen 74673, Germany
e-mail: marc.schneider@de.ebmpapst.com

1Present address: Siemens Switzerland Ltd., Zug 6301, Switzerland.

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 3, 2017; final manuscript received August 8, 2017; published online November 14, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(5), 052601 (Nov 14, 2017) (12 pages) Paper No: GTP-17-1262; doi: 10.1115/1.4038122 History: Received July 03, 2017; Revised August 08, 2017

One of the main design decisions in the development of low-speed axial fans is the right choice of the blade loading versus rotational speed, since a target pressure rise could either be achieved with a slow spinning fan and high blade loading or a fast spinning fan with less flow turning in the blade passages. Both the blade loading and the fan speed have an influence on the fan performance and the fan acoustics, and there is a need to find the optimum choice in order to maximize efficiency while minimizing noise emissions. This paper addresses this problem by investigating five different fans with the same pressure rise but different rotational speeds in the design point (DP). In the first part of the numerical study, the fan design is described and steady-state Reynolds-averaged Navier–Stokes (RANS) simulations are conducted in order to identify the performance of the fans in the DP and in off-design conditions. The investigations show the existence of an optimum in rotational speed regarding fan efficiency and identify a flow separation on the hub causing a deflection of the outflow in radial direction as the main loss source for slow spinning fans with high blade loadings. Subsequently, large eddy simulations (LES) along with the acoustic analogy of Ffowcs Williams and Hawkings (FW–H) are performed in the DP to identify the main noise sources and to determine the far-field acoustics. The identification of the noise sources within the fans in the near-field is performed with the help of the power spectral density (PSD) of the pressure. In the far-field, the sound power level (SWL) is computed using different parts of the fan surface as FW–H sources. Both methods show the same trends regarding noise emissions and allow for a localization of the noise sources. The flow separation on the hub is one of the main noise sources along with the tip vortex with an increase in its strength toward lower rotational speeds and higher loading. Furthermore, a horseshoe vortex detaching from the rotor leading edge and impinging on the pressure side as well as the turbulent boundary layer on the suction side represent significant noise sources. In the present investigation, the maximum in efficiency coincides with the minimum in noise emissions.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Cordier, O. , 1955, Ähnlichkeitsbedingungen für Strömungsmaschinen, VDI-Verlag GmbH, Düsseldorf, Germany, p. 85.
Bianchi, S. , Corsini, A. , and Sheard, A. G. , 2013, “ A Critical Review of Passive Noise Control Techniques in Industrial Fans,” ASME Paper No. GTP-13-1352.
Longhouse, R. E. , 1976, “ Noise Mechanism Separation and Design Considerations for Low Tip-Speed, Axial-Flow Fans,” J. Sound Vib., 48(4), pp. 461–474. [CrossRef]
Sharland, I . J. , 1964, “ Source of Noise in Axial Flow Fans,” J. Sound Vib., 1(3), pp. 302–322. [CrossRef]
Moreau, S. , and Roger, M. , 2007, “ Competing Broadband Noise Mechanisms in Low-Speed Axial Fans,” AIAA J., 45(1), pp. 48–57. [CrossRef]
Wang, J. , Huang, L. , and Cheng, L. , 2004, “ A Study of Active Tonal Noise Control for a Small Axial Flow Fan,” J. Acoust. Soc. Am., 45(1), pp. 734–743.
Moreau, A. , and Guerin, S. , 2016, “ The Impact of Low-Speed Fan Design on Noise: An Exploratory Study,” ASME J. Turbomach., 138(8), p. 081006. [CrossRef]
Bamberger, K. , and Carolus, T. , 2013, “ Impact of Different Aerodynamic Optimization Strategies on the Sound Emitted by Axial Fans,” AIAA Paper No. 2013-2241.
Stadler, M. , Schmitz, M. B. , Laufer, W. , and Ragg, P. , 2014, “ Inverse Aeroacoustic Design of Axial Fans Using Genetic Optimization and the Lattice-Boltzmann Method,” ASME J. Turbomach., 136(4), p. 041011. [CrossRef]
Ffowcs Williams, J. E. , and Hawkings, D. L. , 1969, “ Sound Generation by Turbulence und Surfaces in Arbitrary Motion,” Philos. Trans. R. Soc. London Ser. A, 264(1151), pp. 321–342. [CrossRef]
Pogorelov, A. , Meinke, M. , and Schroede, W. , 2016, “ Impact of Periodic Boundary Conditions on the Flow Field in an Axial Fan,” AIAA Paper No. 2016-0610.
Greschner, B. , Neuber, G. , and Thiele, F. , 2013, “ Simulation of Rotor Tip Leakage Vortex Broadband Noise Using IDDES,” AIAA Paper No. 2013-2152.
Boudet, J. , Cahuzac, A. , Kausche, P. , and Jacob, M. C. , 2015, “ Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering,” ASME J Turbomach, 137(6), p. 061001. [CrossRef]
Vogt, D. , 2014, “ Thermische Strömungsmaschinen,” Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM), University of Stuttgart, Stuttgart, Germany.
Ladson, C. L. , Brooks, C. W. , Hill, A. S. , and Sproles, D. W. , 1996, “ Computer Program to Obtain Ordinates for NACA Airfoils,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Report No. NASA TM-4741. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970008124.pdf
CD-Adapco, 2016, “ STAR-CCM+ Documentation, Version 11.04,” CD-Adapco, Melville, NY.
Reese, H. , and Carolus, T. , 2008, “ Axial Fan Noise: Towards Sound Prediction Based on Numerical Unsteady Flow Data—A Case Study,” Acoustics'08 Paris, Paris, France, June 29–July 4, pp. 4069–4074. http://www.mb.uni-siegen.de/iftsm/forschung/c2008_reese_carolus_euronoise08.pdf
Wagner, C. A. , Hüttl, T. , and Sagaut, P. , 2007, Large-Eddy Simulation for Acoustics, Cambridge University Press, New York. [CrossRef]
Haller, G. , 2005, “ An Objective Definition of a Vortex,” J. Fluid Mech., 525, pp. 1–26. [CrossRef]
ISO, 2011, “ Akustik—Bestimmung der Schalleistungs- und Schallenergiepegel von Geräuschquellen aus Schalldruckmessungen—Hüllflächenverfahren der Genauigkeitsklasse 2 für ein im Wesentlichen freies Schallfeld über einer reflektierenden Ebene,” International Organization for Standardization, Geneva, Switzerland, Standard No. DIN EN ISO 3744.
Magne, S. , Moreau, S. , and Berry, A. , 2015, “ Subharmonic Tonal Noise From Backflow Vortices Radiated by a Low-Speed Ring Fan in Uniform Inlet Flow,” J. Acoust. Soc. Am., 137(1), pp. 228–237. [CrossRef] [PubMed]
Sanjose, M. , Lallier-Daniels, D. , and Moreau, S. , 2015, “ Aeroacoustic Analysis of a Low-Subsonic Axial Fan,” ASME Paper No. GT2015-43737.


Grahic Jump Location
Fig. 5

Example of the CFD domain (fan9000rpm)

Grahic Jump Location
Fig. 4

Example of a CAD model (fan9000rpm)

Grahic Jump Location
Fig. 3

Hub and shroud definition

Grahic Jump Location
Fig. 2

Rotor blade angle distribution at the trailing edge

Grahic Jump Location
Fig. 1

Required relative flow angle at the rotor exit for different rotational speeds to reach a total pressure rise between 400 Pa and 800 Pa (V˙=800 m3 h−1, r = (Dshroud + Dhub)/4). Axial direction: β2 = 0 deg.

Grahic Jump Location
Fig. 6

Mean total to static pressure rise and efficiency, computed between the inlet and outlet (steady-state RANS, DP)

Grahic Jump Location
Fig. 7

Mach number distribution on a plane parallel to the rotational axis in the outlet region, only a section of the outlet region is shown (steady-state RANS, DP)

Grahic Jump Location
Fig. 8

Mean pressure rise through the CFD domain (steady-state RANS, DP): (a) total to static pressure rise and (b) total pressure rise

Grahic Jump Location
Fig. 10

Mean total to static pressure rise and efficiency (steady-state RANS versus time-averaged LES, DP)

Grahic Jump Location
Fig. 11

fan9000rpm: Suction side; left: power spectral density (PSD) (100–4000 Hz); right: iso-surface of Q-criterion (Q = 3 × 107 s−2) colored with relative Mach number (LES, DP)

Grahic Jump Location
Fig. 9

Off-design fan performance (steady-state RANS): (a) total to static pressure rise; (b) total to static efficiency; (c) nondimensional characteristic

Grahic Jump Location
Fig. 13

fan9000rpm: Hub; left: PSD (100–4000 Hz); right: iso-surface of Q-criterion (Q = 3 × 107 s−2) colored with relative Mach number, blades partly hided (LES, DP)

Grahic Jump Location
Fig. 12

fan9000rpm: Pressure side; left: PSD (100–4000 Hz); right: iso-surface of Q-criterion (Q = 3 × 107 s−2) colored with relative Mach number (LES, DP)

Grahic Jump Location
Fig. 14

fan9000rpm: Shroud; top: PSD (100–4000 Hz); bottom: iso-surface of Q-criterion (Q = 3 × 107 s–2) colored with relative Mach number (LES, DP)

Grahic Jump Location
Fig. 15

Definition of the FW–H surfaces

Grahic Jump Location
Fig. 16

Sound power level (SWL) for all investigated fans (100–4000 Hz)

Grahic Jump Location
Fig. 21

Fan efficiency and overall SWL

Grahic Jump Location
Fig. 17

Suction side, PSD (100–4000 Hz): (a) fan9000rpm and (b) fan7000rpm

Grahic Jump Location
Fig. 18

Pressure side, PSD (100–4000 Hz): (a) fan9000rpm and (b) fan7000rpm

Grahic Jump Location
Fig. 19

Shroud, PSD (100–4000 Hz): (a) fan9000rpm and (b) fan7000rpm

Grahic Jump Location
Fig. 20

Overall SWL spectra for all fans



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In