This study evaluates the variations in the acoustic properties of the human femur at ten evenly spaced locations along its length, as well as differences that exist within given transverse sections. Six pairs of human femora, three male and three female, were sectioned, ground, and polished, and scanned with a microprocessor-driven scanning acoustic microscope. Images with a resolution of approximately 140 μm were used to calculate the average acoustic impedances for each transverse cross section and each quadrant within a cross section. The mean acoustic impedance for all the cross sections was 7.69 ± 0.18 Mrayls. Variations were observed among the cross sections, and the central sections (4–7) had values that were statistically greater than the other more distal and proximal sections. Within the cross sections, the posterior quadrant had a lower average acoustic impedance compared to the other quadrants and this was statistically significant (Tukey’s multiple comparison test). The cross sections were further analyzed to determine several geometric parameters including the principal moments of inertia, polar moment of inertia, and the biomechanical shape index. The product of the acoustic impedance and the maximum moment of inertia provided a result that attempted to account for the acoustic property variation and the change in shape at the different section locations.

1.
Briggs, A., “Acoustic Microscopy,” in: Acoustic Microscopy, R. Brook, P. B. Hirsch, C. J. Humphreys, and N. F. Mott, eds., New York: Oxford University Press, pp. 1–325, 1992.
2.
Bereiter-Hahn, J., and Buhles, N., “Basic Principles in Interpretation of Scanning Acoustic Images Obtained From Cell Cultures and Histological Sections,” in: Imaging and Visual Documentation in Medicine, K. Wamsteker, ed., Amsterdam: Elsevier Publ; pp. 537–543, 1987.
3.
Bereiter-Hahn
J.
, “
Comparison of the Appearance of Cultured Cells Observed Using Scanning Acoustomicroscopy With That Obtained by Interference and Fluorescence Microscopy
,”
Scanning Imug. Techn. SPIE
, Vol.
809
, pp.
162
165
,
1987
.
4.
Bereiter-Hahn, J., Litniewski, J., Hillmann, K., Krapohl, A., and Zylberg, L., “What Can Scanning Acoustic Microscopy Tell About Animal Cells and Tissues?” in: Acoustical Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press, pp. 27–38, 1989.
5.
Lees, S., Tao, N. J., and Lindsay, S. M., “Sonic Velocities in Bone at 10 GHz Frequencies,” in: Acoustical Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press, pp. 371–380, 1989.
6.
Okawai, H., Tanaka, M., Dunn, F., Chubachi, N., and Honda, K., “Quantitative Display of Acoustic Properties of the Biological Tissue Elements,” in: Acoustical Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press; pp. 193–202, 1989.
7.
Briggs, G. A. D., Daft, C. M. W., Fagan, A. F., Field, T. A., Lawrence, C. W., Montoto, M., Peck, S. D., Rodriguez, A., and Scruby, C. B., “Acoustic Microscopy of Old and New Materials,” in: Acoustical Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press, pp. 1–16, 1989.
8.
Kashahara, S., Yoshida, K., Kushibiki, J., and Chubachi, N., “Application of Acoustic Microscopy in Dental Research,” in: Acoustical Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press; pp. 153–158, 1989.
9.
Meunier
A.
,
Katz
J. L.
,
Christel
P.
, and
Sedel
L.
, “
A Reflecting Scanning Acoustic Microscopy for Bone and Bovine Biomaterials Interface Studies
,”
J. Orthop. Res.
, Vol.
6
, pp.
770
775
,
1988
.
10.
Tatento, H., Iwashita, Y., Kawano, K., and Noikura, T., “Image of Ion Beam Excited Acoustic Microscope of the Teeth,” in: Acoustic Imaging, H. Schimizu, N. Chubachi, and J. Kushibiki, eds., New York: Plenum Press, p. 125, 1989.
11.
Zimmerman
M. C.
,
Meunier
A.
,
Christel
P.
,
Katz
J. L.
, and
Sedel
L.
, “
The Evaluation of Bone Remodelling About Orthopaedic Implants with Ultrasound
,”
J. Orthop. Res.
, Vol.
7
, pp.
607
611
,
1989
.
12.
Zimmerman
M. C.
,
Meunier
A.
,
Katz
J. L.
, and
Christel
P.
, “
The Evaluation of Cortical Bone Remodelling With a New Ultrasonic Technique
,”
IEEE Trans. Biomed. Eng.
, Vol.
37
: pp.
433
441
,
1990
.
13.
Broz
J.
,
Simske
S.
, and
Greenberg
A.
, “
Material and Compositional Properties of Selectively Demineralized Cortical Bone
,”
J. Biomech.
, Vol.
28
: pp.
1357
1368
,
1995
.
14.
Gardner
T.
,
Elliott
J.
,
Sklar
Z.
, and
Briggs
G.
, “
Acoustic Microscope Study of the Elastic Properties of Fluorapatite and Hydroxyapatite
,”
Tooth Enamel and Bone, J. Biomechanics
, Vol.
25
: pp.
1265
1277
,
1992
.
15.
Turner
C.
,
Chandran
A.
, and
Pidaparti
R.
, “
The Anisotropy of Osteonal Bone and Its Ultrasonic Implications
,”
Bone
, Vol.
17
: pp.
85
89
,
1995
.
16.
Burstein
A. H.
,
Reilly
D. T.
, and
Martens
M.
, “
Aging of Bone Tissue: Mechanical Properties
,”
J. Bone Joint Surg.
, Vol.
58
(
A)
: p.
82
82
,
1976
.
17.
Reilly
D. T.
, and
Burastein
A. H.
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
, Vol.
8
: pp.
395
405
,
1975
.
18.
McElhaney
J. H.
,
Fogle
J. L.
,
Melvin
J. W.
,
Haynes
R. R.
,
Roberts
V. L.
, and
Alem
N.
, “
Mechanical Properties of Cranial Bone
,”
J. Biomech.
, Vol.
3
: pp.
495
511
,
1970
.
19.
Knets, I., and Malmeisters, A., “Deformability and Strength of Human Compact Bone Tissue,” in: Mech. Biological Solids: Proc. Euromech. Colloquium 68, G. Brankov, ed., Sofia: Bulgarian Academy of Sciences, p. 133, 1977.
20.
Ashman
R. B.
,
Cowin
S. C.
,
Van Buskirk
W. C.
, and
Rice
J. C.
, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
, Vol.
17
: pp.
349
361
,
1984
.
21.
Van Buskirk
W. C.
,
Cowin
S. C.
, and
Ward
R. N.
, “
Ultrasonic Measurement of Orthotropic Elastic Constants of Bovine Femoral Bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
: pp.
67
72
,
1981
.
22.
Kim
H. D.
, and
Walsh
W. R.
, “
Mechanical and Ultrasonic Characterization of Cortical Bone
,”
Biomimetics
, Vol.
1
(
4)
: pp.
293
310
,
1992
.
23.
Bloebaum
R. D.
,
Ota
D. T.
,
Skedros
J. G.
, and
Mantas
J. P.
, “
Comparison of Human and Canine External Femoral Morphologies in the Context of Total Hip Replacement
,”
J. Biomed. Mat. Res.
, Vol.
27
: pp.
1149
1159
,
1993
.
24.
Berndt, H., Zimmerman, M. C., Parsons, J. R., and Meunier, A., “Scanning Acoustic Microscopy for Examination of Bone Micromechanical Properties,” Trans. ORS Ann. Mtg., pp. 607, 1992.
25.
Zimmerman
M. C.
,
Prabhakar
A.
,
Chokshi
B. V.
,
Budhwani
N.
, and
Berndt
H.
, “
The Acoustic Properties of Normal and Embedded Bovine Bone as Measured by Acoustic Microscopy
,”
J. Biomed. Mater. Res.
, Vol.
28
: pp.
931
938
,
1994
.
26.
Ruff
C. B.
, and
Hayes
W.
, “
Cross-Sectional Geometry of Pecos Pueblo Femora and Tibiae—A Biomechanical Investigation: I. Method and General Patterns of Variation
,”
Am. J. Phys. Anthr.
, Vol.
60
: pp.
359
381
,
1983
.
27.
Lees, S., “Calcified Tissue,” in: Calcified Tissue, D. W. Hukins, ed., Boca Raton, FL: CRC Press, Inc.; 1989.
28.
Gilmore
R. S.
, and
Katz
J. L.
, “
Elastic Properties of Apatites
,”
J. Mater. Sci.
, Vol.
17
: pp.
1131
1141
,
1982
.
29.
Currey
J. D.
, “
Mechanical Aspects of the Structures of Bone
,”
J. Bone Joint Surg.
, Vol.
46B
: p.
356
356
,
1964
.
30.
Currey, J. D., The Mechanical Adaptations of Bone, Princeton, NJ: Princeton University Press, 1984.
31.
Meunier, A., Riot, O., Christel, P., and Katz, J. L., “Characterization of Local Anisotropic Elastic Properties of Femoral and Tibial Diaphysis Using Acoustic Transmission Measurements and Acoustic Microscopy,” in: Interface in Medicine and Mechanics II., A. Toni, J. Middleton, and G. Palloti, eds., London: Elsevier Applied Science; pp. 454–463, 1991.
32.
Ashman
R. B.
,
Corin
J. D.
, and
Turner
C. H.
, “
Elastic Properties of Cancellous Bone Measurement by an Ultrasonic Technique
,”
J. Biomech.
, Vol.
20
: pp.
987
997
,
1987
.
33.
Evans
F. G.
, and
Lebow
M.
, “
Regional Differences in Some Physical Properties of the Human Femur
,”
J. Applied Physiol.
, Vol.
3
: pp.
563
572
,
1951
.
34.
Martin
R. B.
, and
Atkinson
P. J.
, “
Age and Sex-Related Changes in the Structure and Strength of the Human Femoral Shaft
,”
J. Biomech.
, Vol.
10
: pp.
223
231
,
1977
.
35.
Kimura
T.
, and
Amtmann
E.
, “
Distribution of Mechanical Robustness in the Human Femoral Shaft
,”
J. Biomech.
, Vol.
17
: pp.
41
46
,
1984
.
36.
Atkinson
P. J.
, and
Weatherall
J. A.
, “
Variation in the Density of the Femoral Diaphysis With Age
,”
J. Bone Joint Surg.
, Vol.
49B
: pp.
781
788
,
1967
.
37.
Piziali
R. L.
,
Hight
T. K.
, and
Nagel
D. A.
, “
Geometric Properties of Human Leg Bones
,”
J. Biomechanics
, Vol.
13
: pp.
881
885
,
1980
.
38.
Gillespy
T.
, and
Gillespy
M. P.
, “
Osteoporosis
,”
Rad. Clin. North Am.
, Vol.
29
: pp.
77
84
,
1991
.
This content is only available via PDF.
You do not currently have access to this content.