Wall shear has been widely implicated as a contributing factor in the development of intimal hyperplasia in the anastomoses of chronic arterial bypass grafts. Earlier studies have been restricted to either: (1) in vitro or computer simulation models detailing the complex hemodynamics within an anastomosis without corresponding biological responses, or (2) in vivo models that document biological effects with only approximate wall shear information. Recently, a specially designed pulse ultrasonic Doppler wall shear rate (PUDWSR) measuring device has made it possible to obtain three near-wall velocity measurements nonintrusively within 1.05 mm of the vessel luminal surface from which wall shear rates (WSRs) were derived. It was the purpose of this study to evaluate the effect of graft caliber, a surgically controllable variable, upon local hemodynamics, which, in turn, play an important role in the eventual development of anastomotic hyperplasia. Tapered (4–7 mm I.D.) 6-cm-long grafts were implanted bilaterally in an end-to-side fashion with 30 deg proximal and distal anastomoses to bypass occluded common carotid arteries of 16 canines. The bypass grafts were randomly paired in contralateral vessels and placed such that the graft-to-artery diameter ratio, DR, at the distal anastomosis was either 1.0 or 1.5. For all grafts, the average Re was 432 ± 112 and the average Womersley parameter,α, was 3.59 ± 0.39 based on artery diameter. There was a sharp skewing of flow toward the artery floor with the development of a stagnation point whose position varied with time (up to two artery diameters) and DR (generally more downstream for DR = 1.0). Mean WSRs along the artery floor for DR = 1.0 and 1.5 were found to range sharply from moderate to high retrograde values (589 s−1 and 1558 s−1, respectively) upstream to high antegrade values (2704 s−1 and 2302 s−1, respectively) immediately downstream of the stagnation point. Although there were no overall differences in mean and peak WSRs between groups, there were significant differences (p < 0.05) in oscillatory WSRs as well as in the absolute normalized mean and peak WSRs between groups. There were also significant differences (p < 0.05) in mean and peak WSRs with respect to axial position along the artery floor for both DR cases. In conclusion, WSR varies widely (1558 s−1 retrograde to 2704 s−1 antegrade) within end-to-side distal graft anastomoses, particularly along the artery floor, and may play a role in the development of intimal hyperplasia through local alteration of mass transport and mechano-signal transduction within the endothelium.

1.
Kannel, W. B., Incidence, Prevalence, and Mortality of Cardiovascular Disease. The Heart, Arteries and Veins, 5th ed., New York: McGraw-Hill, 1982, pp. 621–630.
2.
Clowes
A. W.
, and
Reidy
M. A.
, “
Mechanisms of Arterial Graft Failure: The Role of Cellular Proliferation
,”
Ann. NY Acad. Sci.
,
516
:
673
678
,
1987
.
3.
Szilagyi
D. E.
,
Elliott
J. P.
,
Hageman
J. H.
,
Smith
R. F.
, and
Dall’Olmo
C. A.
, “
Biologic Fate of Autogenous Vein Implants as Arterial Substitutes. Clinical, Angiographic and Histopathologic Observations in Femoro-popliteal Operations for Atherosclerosis
,”
Ann. Surg.
,
178
:
232
246
,
1973
.
4.
DeWeese, J. A., “Anastomotic Neointimal Hyperplasia,” in: Vascular Grafts, P. N. Sawyer and M. J. Kaplitt, eds., New York: Apple-Century-Crofts, 1978, pp. 291–307.
5.
Madras
P. N.
,
Ward
C. A.
,
Johnson
W. R.
, and
Singh
P. I.
, “
Anastomotic Hyperplasia
,”
Surgery
,
90
:
922
923
,
1981
.
6.
Rittgers
S. E.
,
Karayannacos
P. E.
,
Guy
J. F.
,
Nerem
R. M.
,
Shaw
G. M.
, and
Hostetler
J. R.
, “
Velocity Distribution and Intimal Proliferation in Autologous Vein Grafts in Dogs
,”
Circ. Res.
,
42
:
792
801
,
1978
.
7.
Bassiouny
H. S.
,
Lieber
B. B.
,
Giddens
D. P.
,
Xu
C. P.
,
Glagov
S.
, and
Zarins
C. K.
, “
Quantitative Inverse Correlation of Wall Shear Stress With Experimental Intimal Thickening
,”
Surg. Forum: Cong. Amer. Coll. Surg.
,
39
:
328
330
,
1988
.
8.
Dobrin
P. B.
,
Littooy
F. N.
, and
Endean
E. D.
, “
Mechanical Factors Predisposing to Intimal Hyperplasia and Medical Thickening in Autogenous Vein Grafts
,”
Surgery
,
105
:
393
400
,
1989
.
9.
Flaherty
J. T.
,
Pierce
J. E.
,
Ferrans
V. J.
,
Patel
D. J.
,
Tucker
W. K.
, and
Fry
D. L.
, “
Endothelial Nuclear Patterns in the Canine Arterial Tree With Particular Reference to Hemodynamic Events
,”
Circ. Res.
,
30
:
23
33
,
1972
.
10.
Nerem
R. M.
, “
Atherogenesis: Hemodynamics, Vascular Geometry, and the Endothelium
,”
Biorheology
,
21
:
565
569
,
1984
.
11.
Ando
J.
,
Ohtsuka
A.
,
Korenaga
R.
,
Kawamura
T.
, and
Kamiya
A.
, “
Wall Shear Stress Rather than Shear Rate Regulates Cytoplasmic Ca++ Responses to Flow in Vascular Endothelial Cells
,”
Biochem. & Biophys. Res. Commun.
,
190
:
716
723
,
1993
.
12.
Kamiya
A.
,
Ando
J.
, and
Shibata
M.
, “
Roles of Fluid Shear Stress in Physiological Regulation of Vascular Structure and Function
,”
Biorheology
,
25
:
271
278
,
1988
.
13.
Diamond
S. L.
,
Eskin
S. G.
, and
Mclntire
L. V.
, “
Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells
,”
Science
,
243
:
1483
1485
,
1989
.
14.
Brewster
D. C.
,
LaSalle
A. J.
,
Robison
J. G.
,
Strayhorn
E. C.
, and
Darling
R. C.
, “
Factors Affecting Patency of Femoro-popliteal Bypass Grafts
,”
Surgery
,
157
:
437
442
,
1983
.
15.
Crawshaw
H. M.
,
Quist
W. C.
,
Serrallach
E.
,
Valeri
C. R.
, and
LoGerfo
F. W.
, “
Flow Disturbances at the Distal End-to-Side Anastomosis
,”
Arch. Surg.
,
115
:
1280
1284
,
1980
.
16.
Sanders
R. J.
,
Kempczinski
R. F.
,
Hammond
W.
, and
DiClementi
D.
, “
The Significance of Graft Diameter
,”
Surgery
,
88
:
856
866
,
1980
.
17.
Bandyk
D. F.
,
Zierler
R. E.
,
Berni
G. A.
, and
Thiele
B. L.
, “
Pulsed Doppler Velocity Patterns Produced by Arterial Anastomoses
,”
Ultrasound Med. Biol.
,
9
:
79
87
,
1983
.
18.
Kokubo
M.
, “
Influence of Flow Disturbances on an Anastomotic Intimal Hyperplasia
,”
Nihon Geka Gakkai Zasshi
,
89
:
1707
1715
,
1988
.
19.
Turitto
V. T.
, and
Baumgartner
H. R.
, “
Platelet Interaction With Subendothelium in Flowing Rabbit Blood: Effect of Blood Shear Rate
,”
Microvasc. Res.
,
17
:
38
54
,
1979
.
20.
Bodziak
K.
, and
Richardson
P. D.
, “
Turnover of Adherent Platelets: Some Effects of Shear Rate, ASA, and Reduced Anticoagulation
,”
Trans. Am. Soc. Artif. Intern. Organs
,
28
:
426
430
,
1982
.
21.
Badimon
L.
,
Badimon
J. J.
,
Galvez
A.
,
Chesebro
J. H.
, and
Fuster
V.
, “
Influence of Arterial Damage and Wall Shear Rate on Platelet Deposition
,”
Arteriosclerosis
,
6
:
312
320
,
1986
.
22.
Zarins
C. K.
,
Giddens
D. P.
,
Bharadvaj
B. K.
,
Sottiurai
V. S.
,
Mabon
R. F.
, and
Glagov
S.
, “
Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
,
53
:
4
:
502
514
,
1983
.
23.
Sabbah
H. N.
,
Khaja
F.
,
Hawkins
E. T.
,
Brymer
J. F.
,
McFarland
T. M.
,
Van-der-Bel-Kahn
J.
,
Doerger
P. T.
, and
Stein
P. D.
, “
Relation of Atherosclerosis to Arterial Wall Shear in the Left Anterior Descending Coronary Artery of Man
,”
Am. Heart J.
,
112
:
3
:
453
458
,
1986
.
24.
Berceli
S. A.
,
Warty
V. S.
,
Sheppeck
R. A.
,
Mandarino
W. A.
,
Tanksale
S. K.
, and
Borovetz
H. S.
, “
Hemodynamics and Low Density Lipoprotein Metabolism: Rates of Low Density Lipoprotein Incorporation and Degradation Along Medial and Lateral Walls of the Rabbit Aorto-iliac Bifurcation
,”
Arteriosclerosis
,
10
:
688
694
,
1990
.
25.
Shu
M. C. S.
and
Hwang
H. H. C.
, “
Haemodynamics of Angioaccess Venous Anastomoses
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
13
:
103
112
,
1991
.
26.
Morinaga
K.
,
Okadome
K.
,
Kuroki
M.
,
Miyazaki
T.
,
Muko
Y.
, and
Inokuchi
K.
, “
Effect of Wall Shear Stress on Intimal Thickening of Arterially Transplanted Autogenous Veins in Dogs
,”
J. Vasc. Surg.
,
2
:
430
433
,
1985
.
27.
Binns
R. L.
,
Ku
D. N.
,
Stewart
M. T.
,
Ansley
J. P.
, and
Coyle
K. A.
, “
Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing
,”
J. Vasc. Surg.
,
10
:
326
337
,
1989
.
28.
Ku
D. N.
,
Chen
C.
, and
Salam
T.
, “
Neointimal Hyperplasia Thickness is Inversely Proportional to Wall Shear Stress in PTFE Grafts
,”
Advances in Bioengineering
, ASME BED-Vol.
31
:
175
176
,
1995
.
29.
Keynton
R. S.
,
Nemer
R. E.
,
Neifert
Q. Y.
,
Fatemi
R. S.
, and
Rittgers
S. E.
, “
Design, Fabrication and In Vitro Evaluation of an In Vivo Ultrasonic Doppler Wall Shear Rate Measuring Device
,”
IEEE Trans. Biomed. Eng.
,
42
:
433
441
,
1995
.
30.
Keynton
R. S.
,
Shu
M. C. S.
, and
Rittgers
S. E.
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
113
:
458
463
,
1991
.
31.
White
S. S.
,
Zarins
C. K.
,
Giddens
D. P.
,
Bassiouny
H.
,
Loth
F.
,
Jones
S. A.
, and
Glagov
S.
, “
Hemodynamic Patterns in Two Flow Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number and Hood Length
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
:
104
111
,
1993
.
32.
Ojha
M.
,
Ethier
C. R.
,
Johnston
K. W.
, and
Cobbold
R. S. C.
, “
Steady and Pulsatile Flow in an End-to-Side Arterial Anastomosis Model
,”
J. Vasc. Surg.
,
12
:
747
753
,
1990
.
33.
Steinman
D. A.
,
Vinh
B.
,
Ethier
C. R.
,
Ojha
M.
,
Cobbold
R. S. C.
, and
Johnston
K. W.
, “
A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
115
:
112
118
,
1993
.
34.
Fei
D. Y.
,
Thomas
J. D.
, and
Rittgers
S. E.
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
116
:
355
360
,
1994
.
35.
Perktold
K.
,
Tatzl
H.
, and
Rappitsch
G.
, “
Flow Dynamic Effect of the Anastomotic Angle: A Numerical Study of Pulsatile Flow in Vascular Graft Anastomoses Models
,”
Technology and Healthcare
,
1
:
197
207
,
1994
.
36.
Jones
S. A.
,
Giddens
D. P.
,
Loth
F.
,
Zarins
C. K.
,
Kajiya
F.
,
Morita
I.
,
Hiramatsu
O.
,
Ogasawara
Y.
, and
Tsujioka
K.
, “
In-Vivo Measurements of Blood Flow Velocity Profiles in Canine Ilio-femoral Anastomotic Bypass Grafts
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
119
:
30
38
,
1997
.
37.
Zarins
C. K.
,
Zatina
M. A.
,
Giddens
D. P.
,
Ku
D. N.
, and
Glagov
S.
, “
Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis
,”
J. Vasc. Surg.
,
1987
;
5
:
413
420
.
38.
Loth
F.
,
Jones
S. A.
,
Giddens
D. P.
,
Bassiouny
H. S.
,
Glagov
S.
, and
Zarins
C. K.
, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
1997
;
119
:
187
194
.
39.
Caro
C. G.
,
Fitz-Gerald
J. M.
, and
Schroter
R. C.
, “
Arterial Wall Shear: Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. Lond.
,
177
:
109
159
,
1971
.
40.
Jacobs
E. R.
,
Cheliakine
C.
,
Gebremedhin
D.
,
Birks
E. K.
,
Davies
P. F.
, and
Harder
D. R.
, “
Shear Activated Channels in Cell-Attached Patches of Cultured Bovine Aortic Endothelial Cells
,”
Euro. J. Physiol.
,
431
:
129
131
,
1995
.
41.
Dull
R. O.
,
Tarbell
J. M.
, and
Davies
P. F.
, “
Mechanisms of Flow-Mediated Signal Transduction in Endothelial Cells: Kinetics of ATP Surface Concentrations
,”
J. Vasc. Res.
,
29
:
410
419
,
1992
.
42.
Shyy
J. Y.
,
Li
Y. S.
,
Lin
M. C.
,
Chen
W.
,
Yuan
S.
,
Usami
S.
, and
Chien
S.
, “
Multiple cis-Elements Mediate Shear Stress-Induced Gene Expression
,”
J. Biomechanics
,
28
:
1451
1457
,
1995
.
43.
Satcher
R. L.
, and
Dewey
C. F.
, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
,
1996
;
71
:
109
118
.
This content is only available via PDF.
You do not currently have access to this content.