A finite deformation mixture theory is used to quantify the mechanical properties of the annulus fibrosus using experimental data obtained from a confined compression protocol. Certain constitutive assumptions are introduced to derive a special mixture of an elastic solid and an inviscid fluid, and the constraint of intrinsic incompressibility is introduced in a manner that is consistent with results obtained for the special theory. Thirty-two annulus fibrosus specimens oriented in axial n=16 and radial n=16 directions were obtained from the middle-lateral portion of intact intervertebral discs from human lumbar spines and tested in a stress-relaxation protocol. Material constants are determined by fitting the theory to experimental data representing the equilibrium stress versus stretch and the surface stress time history curves. No significant differences in material constants due to orientation existed, but significant differences existed due to the choice of theory used to fit the data. In comparison with earlier studies with healthy annular tissue, we report a lower aggregate modulus and a higher initial permeability constant. These differences are explained by the choice of reference configuration for the experimental studies. [S0148-0731(00)01002-5]

1.
Vernon-Roberts
,
B.
, and
Pirie
,
C.
,
1977
, “
Degenerative Changes in the Intervertebral Discs of the Lumbar Spine and their Sequelae
,”
Rheumatol. Rehabil.
,
16
, pp.
13
21
.
2.
Yasuma
,
T.
,
1990
, “
Histological Changes in Aging Lumbar Intervertebral Discs. Their Role in Protrusions and Prolapses
,”
J. Bone Jt. Surg.
,
72A
, No.
2
, pp.
220
229
.
3.
Brickley-Parsons
,
D.
, and
Glimcher
,
J.
,
1984
, “
Is the Chemistry of Collagen in Intervertebral Discs an Expression of Wolff’s Law? A Study of the Human Lumbar Spine
,”
Spine
,
9
, No.
2
, pp.
148
163
.
4.
Lotz
,
J. C.
, et al.
,
1998
, “
Compression-Induced Degeneration of the Intervertebral Disc: an in Vivo Mouse Model and Finite-Element Study. 1998 Volvo Award Winner in Biomechanical Studies
,”
Spine
,
23
, No.
23
, pp.
2493
2506
.
5.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
, pp.
331
350
.
6.
Holm
,
S.
, and
Nachemson
,
A.
,
1983
, “
Variations in the Nutrition of the Canine Intervertebral Disc Induced by Motion
,”
Spine
,
8
, No.
8
, pp.
866
874
.
7.
Urban
,
J. P. G.
, et al.
,
1982
, “
Nutrition of the Intervertebral Disc
,”
Clin. Orthop.
,
170
, pp.
296
302
.
8.
Mow
,
V. C.
, et al.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
9.
Craine
,
R. E.
,
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1970
, “
A Mixture of Viscous Elastic Materials With Different Constituent Temperatures
,”
Q. J. Mech. Appl. Math.
,
23
, No.
2
, pp.
171
184
.
10.
Mills
,
N.
,
1966
, “
Incompressible Mixtures of Newtonian Fluids
,”
Int. J. Eng. Sci.
,
4
, pp.
97
112
.
11.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration and Water Content
,”
J. Bone Jt. Surg.
,
64A
, pp.
88
94
.
12.
Kwan
,
M. K.
,
Lai
,
M. W.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
13.
Best
,
B. A.
, et al.
,
1994
, “
Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
, No.
2
, pp.
212
221
.
14.
Iatridis
,
J. C.
, et al.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Annulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
15.
Truesdell, C., and Toupin, R. A., 1960, “The Classical Field Theories,” in: Handbuch der Physik, S. Flu¨gge, ed., Springer-Verlag, Berlin.
16.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1968
, “
A Note on Mixtures
,”
Int. J. Eng. Sci.
,
6
, pp.
631
635
.
17.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1969
, “
On Basic Equations for Mixtures
,”
Q. J. Mech. Appl. Math.
,
22
, pp.
427
438
.
18.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
, pp.
1129
1148
.
19.
Mu¨ller
,
I.
,
1968
, “
A Thermodynamic Theory of Mixtures of Fluids
,”
Arch. Ration. Mech. Anal.
,
28
, pp.
1
39
.
20.
Ateshian
,
G. A.
, et al.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, No.
11/12
, pp.
1157
1164
.
21.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
22.
Holmes
,
M. H.
,
1986
, “
Finite Deformation of Soft Tissue: Analysis of a Mixture Model in Uni-axial Compression
,”
J. Biomech. Eng.
,
108
, pp.
372
381
.
23.
Oomens
,
C. W. J.
,
van Campen
,
D. H.
, and
Grootenboer
,
H. J.
,
1987
, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
,
20
, pp.
877
885
.
24.
Cohen, B., 1992, “Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the Growth Plate,” Ph.D. dissertation, Columbia University.
25.
Krishnaswamy
,
S.
, and
Batra
,
R.
,
1997
, “
A Thermomechanical Theory of Solid-Fluid Mixtures
,”
Math. Mech. Solids
,
2
, pp.
143
151
.
26.
Atkin
,
R. J.
, and
Craine
,
R. E.
,
1976
, “
Continuum Theories of Mixtures: Applications
,”
J. Inst. Math. Appl.
,
17
, pp.
153
207
.
27.
Klisch, S. M., 1999, “A Continuum Mixture Theory With Internal Constraints for Annulus Fibrosus,” Ph.D. dissertation, University of California at Berkeley.
28.
Atkin
,
R. J.
, and
Craine
,
R. E.
,
1976
, “
Continuum Theories of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
,
29
, pp.
209
244
.
29.
Klisch, S. M., 2000, “Internally Constrained Mixtures of Elastic Materials,” Mathematics and Mechanics of Solids.
30.
Shi
,
J.
,
Rajagopal
,
K.
, and
Wineman
,
A.
,
1981
, “
Applications of the Theory of Interacting Continua to the Diffusion of a Fluid Through Non-linear Elastic Media
,”
Int. J. Eng. Sci.
,
19
, pp.
871
879
.
31.
Thompson
,
J. P.
, et al.
,
1990
, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
,
15
, No.
5
, pp.
411
415
.
32.
Madsen
,
N. K.
, and
Sincovec
,
R. F.
,
1979
, “
Collocation Software for Partial Differential Equations
,”
ACM-TOMS
,
5
, No.
3
, pp.
326
351
.
33.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
1999
, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
,
32
, No.
10
, pp.
1027
1036
.
34.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
,
1998
, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
,
31
, pp.
171
178
.
35.
Rajagopal, K. R., and Tao, L., 1995, Mechanics of Mixtures, World Scientific, Singapore.
36.
Reynolds
,
R. A.
, and
Humphrey
,
J. D.
,
1998
, “
Steady Diffusion Within a Finitely Extended Mixture Slab
,”
Math. Mech. Solids
,
3
, pp.
147
167
.
37.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
1999
, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
Adv. Bioeng. ASME
,
39
, p.
237
237
.
38.
Treloar, L. R. G., 1975, The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford.
You do not currently have access to this content.