A dual-pressure boundary condition has been developed for computational modelling of bifurcating conduits. The condition involves the imposition of a constant pressure on one branch while adjusting iteratively the pressure on the other branch until the desired flow division is obtained. The dual-pressure condition eliminates the need for specifying fully-developed flow conditions, which thereby enables significant reduction of the outlet branch lengths. The dual-pressure condition is suitable for both steady and time-periodic simulations of laminar or turbulent flows.

1.
Perktold
,
K.
, and
Hilbert
,
D.
,
1986
, “
Numerical Simulation of Pulsatile Flow in a Carotid Bifurcation Model
,”
J. Biomed. Eng.
,
8
, pp.
193
199
.
2.
Perktold
,
K.
,
Resch
,
M.
, and
Peter
,
R.
,
1991
, “
Three-dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation
,”
J. Biomech.
,
24
, pp.
409
420
.
3.
Rindt
,
C. C.
,
Steevhoven
,
A. A.
,
Janssen
,
J. D.
, and
Renman
,
R. S.
,
1990
, “
A Numerical Analysis of Steady Flow in a Three-Dimensional Model of the Carotid Artery Bifurcation
,”
J. Biomech.
,
23
, pp.
461
473
.
4.
McDonald
,
D. A.
,
1955
, “
Method for the Calculation of the Velocity, Rate of Floe and Viscous Drag in Arteries when the Pressure Gradient is Known
,”
J. Physiol.
127
, pp.
553
563
.
5.
Smith
,
R. F.
,
Rutt
,
B. K.
,
Fox
,
A. J.
,
Rankin
,
R. N.
, and
Holdsworth
,
D. W.
,
1996
, “
Geometry Characterization of Stenosed Human Carotid Arteries
,”
Acad. Radiol.
,
3
, pp.
898
911
.
6.
AEA Technology, Advanced Scientific Computing Ltd. CFX-Tfc.
7.
Gin, R., Straatman, A. G., and Steinman, D. A., 1999, “Numerical Modelling of the Carotid Artery Bifurcation using a Physiologically Relevant Geometric Model,” 7th Annual Conference of the CFD Society of Canada, Halifax, Nova Scotia, Canada, pp. 5.49–5.54.
8.
Steinman
,
D. A.
,
Poepping
,
T. L.
,
Tambasco
,
M.
,
Rankin
,
R. N.
, and
Holdsworth
,
D. W.
,
2000
, “
Flow Patterns at the Stenosed Carotid Bifurcation: Effect of Concentric vs. Eccentric Stenosis
,”
Ann. Biomed. Eng.
,
28
, pp.
415
23
.
9.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
,
1982
, “
Steady Flow in a Model of the Human Carotid Artery Bifurcation. Part 1—Flow Visualization
,”
J. Biomech.
,
15
, pp.
349
362
.
10.
Gin, R., 2000, “Numerical Modelling of a Mildly Stenosed Carotid Artery,” M.E.Sc. thesis, The University of Western Ontario, London, Canada.
You do not currently have access to this content.