Tensile stiffness of articular cartilage is much greater than its compressive stiffness and plays an essential role even in compressive properties by increasing transient fluid pressures during physiological loading. Recent studies of nonlinear properties of articular cartilage in compression revealed several physiologically pertinent nonlinear behaviors, all of which required that cartilage tensile stiffness increase significantly with stretch. We therefore performed sequences of uniaxial tension tests on fresh bovine articular cartilage slices using a protocol that allowed several hours to attain equilibrium and measured longitudinal and transverse tissue strain. By testing bovine cartilage from different ages (6 months to 6 years) we found that equilibrium and transient tensile modulus increased significantly with maturation and age, from 0 to 15 MPa at equilibrium and from 10 to 28 MPa transiently. Our results indicate that cartilage stiffens with age in a manner similar to other highly hydrated connective tissues, possibly due to age-dependent content of enzymatic and nonenzymatic collagen cross links. The long relaxation period used in our tests (5–10 hours) was necessary in order to attain equilibrium and avoid a very significant overestimation of equilibrium modulus that occurs when much shorter times are used (15–30 minutes). We also found that equilibrium and transient tensile modulus increased nonlinearly when cartilage is stretched from 0 to 10% strain without any previous tare load. Although our results estimate a nonlinear increase in tensile stiffness with stretch that is an order of magnitude lower than that required to predict nonlinear properties in compression, they are in agreement with previous results from other uniaxial tension tests of collagenous materials. We therefore speculate that biaxial tensile moduli may be much higher and thereby more compatible with observed nonlinear compressive properties.

1.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
J. Biomech. Eng.
,
120
(
4
), pp.
491
6
.
2.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
121
(
3
), pp.
340
7
.
3.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
,
122
(
6
), pp.
576
86
.
4.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphastic Model
,”
J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.
5.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Los Angel. Calif.)
,
14
(
9
), pp.
673
82
.
6.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2001
, “
The Asymmetry of Transient Response in Compression Versus Release for Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
123
(
5
), pp.
519
22
.
7.
Weightman
,
B.
,
1976
, “
Tensile Fatigue of Human Articular Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
193
200
.
8.
Kempson, G. E., 1980, “The Joints and Synovial Fluid, vol., II,” Academic Press, New-York, pp. 177–238, Chap. 5.
9.
Kempson
,
G. E.
,
1991
, “
Age-Related Changes in the Tensile Properties of Human Articular Cartilage: A Comparative Study Between the Femoral Head of the Hip Joint and the Talus of the Ankle Joint
,”
Biochim. Biophys. Acta
,
1075
(
3
), pp.
223
230
.
10.
Kempson
,
G. E.
,
Muir
,
H.
,
Pollard
,
C.
, and
Tuke
,
M.
,
1973
, “
The Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of Collagen and Glycosaminoglycans
,”
Biochim. Biphys. Acta
,
297
(
2
), pp.
456
472
.
11.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.
12.
Kempson
,
G. E.
,
Tuke
,
M. A.
,
Dingle
,
J. T.
,
Barrett
,
A. J.
, and
Horsfield
,
P. H.
,
1976
, “
The Effects of Proteolytic Enzymes on the Mechanical Properties of Adult Human Articular Cartilage
,”
Biochim. Biophys. Acta
,
428
(
3
), pp.
741
760
.
13.
Hedlund
,
H.
,
Mengarelliwidholm
,
S.
,
Reinholt
,
F. P.
, and
Svensson
,
O.
,
1993
, “
Stereologic Studies on Collagen in Bovine Articular Cartilage
,”
APMIS
,
101
(
2
), pp.
133
140
.
14.
Schenk, R. K., Eggli, P. S., and Hunziker, E. B., 1986, “Articular Cartilage Morphology” In Articular Cartilage Biochemistry, Raven Press, New York, pp. 3–23.
15.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1979
, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
,
12
(
6
), pp.
437
446
.
16.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
J. Biomech. Eng.
,
102
(
2
), pp.
85
90
.
17.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
J. Biomech. Eng.
,
124
(
2
), pp.
223
8
.
18.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
,
1981
, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
J. Biomech. Eng.
,
103
(
4
), pp.
221
231
.
19.
Schmidt
,
M. B.
,
Mow
,
V. C.
,
Chun
,
L. E.
, and
Eyre
,
D. R.
,
1990
, “
Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage
,”
J. Orthop. Res.
,
8
(
3
), pp.
353
363
.
20.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.
21.
Roth
,
V.
, and
Mow
,
V. C.
,
1980
, “
The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and its Variation with Age
,”
J. Bone Jt. Surg., Am. Vol.
,
62
(
7
), pp.
1102
1117
.
22.
Langelier, E., and Buschmann, M. D., 2003, “Strain-Amplitude and Strain-Rate Dependant Nonlinear Behavior and Material Properties Alterations of Articular Cartilage in Unconfined Compression,” J. Biomech., In Revision.
23.
Bailey
,
A. J.
,
Paul
,
R. G.
, and
Knott
,
L.
,
1998
, “
Mechanisms of Maturation and Ageing of Collagen
,”
Mech. Ageing Dev.
,
106
(
1–2
), pp.
1
56
.
24.
Eyre
,
D. R.
,
Dickson
,
I. R.
, and
Van Ness
,
K.
,
1988
, “
Collagen Cross-Linking in Human Bone and Articular Cartilage. Age-Related Changes in the Content of Mature Hydroxypyridinium Residues
,”
Biochem. J.
,
252
(
2
), pp.
495
500
.
25.
Verzijl
,
N.
,
DeGroot
,
J.
,
Oldehinkel
,
E.
,
Bank
,
R. A.
,
Thorpe
,
S. R.
,
Baynes
,
J. W.
,
Bayliss
,
M. T.
,
Bijlsma
,
J. W.
,
Lafeber
,
F. P.
, and
Tekoppele
,
J. M.
,
2000
, “
Age-Related Accumulation of Maillard Reaction Products in Human Articular Cartilage Collagen
,”
Biochem. J.
,
350
(Pt
2
), pp.
381
7
.
26.
Bank
,
R. A.
,
Bayliss
,
M. T.
,
Lafeber
,
F. P.
,
Maroudas
,
A.
, and
Tekoppele
,
J. M.
,
1998
, “
Ageing and Zonal Variation in Post-Translational Modification of Collagen in Normal Human Articular Cartilage—the Age-Related Increase in Non-Enzymatic Glycation Affects Biomechanical Properties of Cartilage
,”
Biochem. J.
,
330
(Pt
1
), pp.
345
351
.
27.
Pins
,
G. D.
,
Huang
,
E. K.
,
Christiansen
,
D. L.
, and
Silver
,
F. H.
,
1997
, “
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers
,”
J. Appl. Polym. Sci.
,
63
, pp.
1429
40
.
28.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2002
, “
The Role of Fibril Reinforcement in the Mecanichal Behavior Cartilage
,”
Biorheology
,
39
, pp.
89
96
.
29.
Kamalanathan
,
S.
, and
Broom
,
N. D.
,
1993
, “
The Biomechanical Ambiguity of the Articular Surface
,”
J. Anat.
,
183
(Pt
3
), pp.
567
578
.
You do not currently have access to this content.