The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.

1.
American Medical Association, 2002, “Heart Disease and Stroke Statistics—2003 Update,” American Heart Association, Dallas, TX.
2.
DeBakey
,
M. E.
,
2000
, “
The Odyssey of the Artificial Heart
,”
Artif. Organs
,
24
(
6
), pp.
405
11
.
3.
Olsen
,
D. B.
,
2000
, “
The History of Continuous-Flow Blood Pumps
,”
Artif. Organs
,
24
(
6
), pp.
401
4
.
4.
Song
,
X.
,
Throekmorton
,
A. L.
,
Untaroiu
,
A.
,
Patel
,
S.
,
Allaire
,
P. E.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
,
2003
, “
Axial Flow Blood Pumps
,”
ASAIO J.
,
49
, pp.
355
364
.
5.
Burgreen
,
G. W.
,
Antaki
,
J. F.
, and
Griffith
,
B. P.
,
1996
, “
A Design Improvement Strategy for Axial Blood Pumps Using Computational Fluid Dynamics
,”
ASAIO J.
,
42
, pp.
M354–M360
M354–M360
.
6.
Miyazoe
,
Y.
,
Sawairi
,
T.
,
Ito
,
K.
,
Konishi
,
Y.
,
Yamane
,
T.
,
Nishida
,
M.
,
Masuzawa
,
T.
,
Takiura
,
K.
, and
Taenaka
,
Y.
, , “Computational Fluid Dynamic Analyses to Establish Design Process of Centrifugal Blood Pumps,” Artif. Organs, 23, pp. 381–385.
7.
Wood
,
H. G.
,
Anderson
,
J. B.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
, and
Bearnson
,
G.
,
1999
, “
Numerical Solution for Blood Flow in a Centrifugal Assist Device
,”
Int. J. Artif. Organs
,
22
(
12
), pp.
827
36
.
8.
Allaire
,
P. E.
,
Wood
,
H. G.
,
Awad
,
R. S.
, and
Olsen
,
D. B.
,
1999
, “
Blood Flow in a Continuous Flow Ventricular Assist Device
,”
Artif. Organs
,
27
(
8
), pp.
769
73
.
9.
Anderson
,
J. B.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Bearnson
,
G.
, and
Khanwilkar
,
P.
,
2000
, “
Computational Flow Study of the CFVAD3 Blood Pump
,”
Artif. Organs
,
24
(
5
), pp.
377
85
.
10.
Anderson
,
J. B.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
,
Olsen
,
D. B.
, and
Bearnson
,
G.
,
2000
, “
Numerical Studies of Blood Shear and Washing in a Continuous Flow Ventricular Assist Device
,”
ASAIO J.
,
46
(
4
), pp.
486
94
.
11.
Apel
,
J.
,
Neuael
,
F.
, and
Reul
,
H.
,
2001
, “
Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump
,”
ASAIO J.
,
47
(
5
), pp.
552
8
.
12.
Curtas
,
A. R.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
,
Day
,
S. W.
, and
Olsen
,
D. B.
,
2002
, “
Computational Fluid Dynamics Modeling of Impeller Designs for the HeartQuest Left Ventricular Assist Device
,”
ASAIO J.
,
48
(
5
), pp.
552
61
.
13.
Allaire
,
P. E.
,
Kin
,
H. C.
, and
Maslen
,
E. H.
,
1996
, “
Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings
,”
Artif. Organs
,
20
(
6
), pp.
582
90
.
14.
Kanwilkar
,
P. S.
,
Olsen
,
D. B.
, and
Beamson
,
G. B.
,
1996
, “
Using Hybrid Magnetic Bearings to Completely Suspend the Impeller of a Ventricular Assist Device
,”
Artif. Organs
,
20
(
6
), pp.
597
604
.
15.
Joles
,
J. A.
,
Willekes-Koolschijn
,
N.
, and
Koomans
,
H. A.
,
1997
, “
Hypoalbuminemia Causes High Blood Viscosity by Increasing Red Cell Lysophosphatidylcholine
,”
Kidney Int.
,
52
(
3
), pp.
761
770
.
16.
Eckmann
,
D. M.
,
Bowers
,
S.
,
Stecker
,
M.
, and
Cheung
,
A. T.
,
2000
, “
Hematocrit, Volume Expander, Temperature, and Shear Rate Effects on Blood Viscosity
,”
Anesth. Analg. (Baltimore)
,
91
(
3
), pp.
539
545
.
17.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Song
,
X.
,
Lemire
,
P. P.
, and
Miles
,
S. D.
,
2002
, “
A Prototype HeartQuest™ Ventricular Assist Device for Particle Image Velocimetry Measurements
,”
Artif. Organs
,
26
(
11
), pp.
1002
1005
.
18.
Song
,
X.
,
Wood
,
H. G.
,
Day
,
S. W.
, and
Olsen
,
D. B.
, , “Studies of Turbulence Models in a CFD Model of a Blood Pump,” Artif. Organs, 27(10), pp. 938–941.
19.
Bludszuweit
,
C.
,
1995
, “
Model for a General Mechanical Blood Damage Prediction
,”
Artif. Organs
,
19
(
7
), pp.
583
89
.
20.
Heuser
,
G.
, and
Optiz
,
R.
,
1980
, “
A Couette Viscometer for Short Time Shearing in Blood
,”
Biorheology
,
17
, pp.
17
24
.
21.
Giersicpen
,
M.
,
Warzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses—in vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
22.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.
23.
Chan
,
W. K.
,
Wong
,
Y. W.
,
Ding
,
Y.
,
Chua
,
L. P.
, and
Yu
,
S. C. M.
,
2002
, “
Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump
,”
Artif. Organs
,
16
(
9
), pp.
785
793
.
24.
Song
,
X.
,
Throekmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
,
2003
, “
CFD Prediction of Blood Damage in a Centrifugal Pump
,”
Artif. Organs
,
27
(
10
), pp.
935
937
.
25.
Stepanoff A. J., 1957, Centrifugal and Axial Flow Pumps, Krieger Publishing Company, Malabar, FL.
26.
Karassik I. J., Krutzsch W. C., Fraser W. H., and Messina J. P., 1985, Pump Handbook (Second Edition), McGraw-Hill Publishing Company, New York, NY.
27.
Sutera
,
S. P.
, and
Mehrjardi
,
M. H.
,
1975
, “
Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow
,”
Biophys. J.
,
15
, pp.
1
10
.
28.
Zante
,
E. V.
,
Strazisar
,
A. J.
, and
Wood
,
J. R.
,
2000
, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
,
122
, pp.
733
42
.
You do not currently have access to this content.