Tendons have complex mechanical behaviors that are nonlinear and time dependent. It is widely held that these behaviors are provided by the tissue’s composition and structure. It is generally thought that type I collagen provides the primary elastic strength to tendon while proteoglycans, such as decorin, play a role in failure and viscoelastic properties. This study sought to quantify such structure-function relationships by comparing tendon mechanical properties between normal mice and mice genetically engineered for altered type I collagen content and absence of decorin. Uniaxial tensile ramp to failure experiments were performed on tail tendon fascicles at two strain rates, 0.5%/s and 50%/s. Mutations in type I collagen led to reduced failure load and stiffness with no changes in failure stress, modulus or strain rate sensitivity. Fascicles without decorin had similar elastic properties to normal fascicles, but reduced strain rate sensitivity. Fascicles from immature mice, with increased decorin content compared to adult fascicles, had inferior elastic properties but higher strain rate sensitivity. These results showed that tendon viscoelasticity is affected by decorin content but not by collagen alterations. This study provides quantitative evidence for structure-function relationships in tendon, including the role of proteoglycan in viscoelasticity.

1.
Woo
,
S. L.
,
1982
, “
Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties
,”
Biorheology
,
19
(
3
), pp.
385
96
.
2.
Fung
,
Y. C.
,
1968
, “
Biomechanics: Its Scope, History, and Some Problems of Continuum Mechanics in Physiology
,”
Appl. Mech. Rev.
,
21
, pp.
1
20
.
3.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
, and
Leyvraz
,
P. F.
,
1999
, “
Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex
,”
Med. Eng. Phys.
,
21
, pp.
95
100
.
4.
Blevins
,
F. T.
,
Hecker
,
A. T.
,
Bigler
,
G. T.
,
Boland
,
A. L.
, and
Hayes
,
W. C.
,
1994
, “
The Effects of Donor Age and Strain Rate on the Biomechanical Properties of Bone-Patellar Tendon-Bone Allografts
,”
Am. J. Sports Med.
,
22
(
3
), pp.
328
33
.
5.
Haut
,
R. C.
,
1985
, “
The Effect of a Lathyritic Diet on the Sensitivity of Tendon to Strain Rate
,”
J. Biomech. Eng.
,
107
(
2
), pp.
166
74
.
6.
Haut
,
R. C.
,
1983
, “
Age-Dependent Influence of Strain Rate on the Tensile Failure of Rat-Tail Tendon
,”
J. Biomech. Eng.
,
105
(
3
), pp.
296
9
.
7.
Parry
,
D. A.
,
1988
, “
The Molecular and Fibrillar Structure of Collagen and Its Relationship to the Mechanical Properties of Connective Tissue
,”
Biophys. Chem.
,
29
(
1-2
), pp.
195
209
.
8.
Mikic
,
B.
,
Schalet
,
B. J.
,
Clark
,
R. T.
,
Gaschen
,
V.
, and
Hunziker
,
E. B.
,
2001
, “
GDF-5 Deficiency in Mice Alters the Ultrastructure, Mechanical Properties and Composition of the Achilles Tendon
,”
J. Orthop. Res.
,
19
(
3
), pp.
365
71
.
9.
Derwin
,
K. A.
, and
Soslowsky
,
L. J.
,
1999
, “
A Quantitative Investigation of Structure-Function Relationships in a Tendon Fascicle Model
,”
J. Biomech. Eng.
,
121
(
6
), pp.
598
604
.
10.
Parry
,
D. A.
, and
Craig
,
A. S.
,
1977
, “
Quantitative Electron Microscope Observations of the Collagen Fibrils in Rat-Tail Tendon
,”
Biopolymers
,
16
(
5
), pp.
1015
31
.
11.
Trotter
,
J. A.
, and
Koob
,
T. J.
,
1989
, “
Collagen and Proteoglycan in a Sea Urchin Ligament with Mutable Mechanical Properties
,”
Cell Tissue Res.
,
258
, pp.
527
539
.
12.
Craig
,
A. S.
,
Birtles
,
M. J.
,
Conway
,
J. F.
, and
Parry
,
D. A.
,
1989
, “
An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age
,”
Connect. Tissue Res.
,
19
(
1
), pp.
51
62
.
13.
Blevins
,
F. T.
,
Djurasovic
,
M.
,
Flatow
,
E. L.
, and
Vogel
,
K. G.
,
1997
, “
Biology of the Rotator Cuff Tendon
,”
Orthop. Clin. North Am.
,
28
(
1
), pp.
1
16
.
14.
Danielson
,
K. G.
,
Baribault
,
H.
,
Holmes
,
D. F.
,
Graham
,
H.
,
Kadler
,
K. E.
, and
Iozzo
,
R. V.
,
1997
, “
Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility
,”
J. Cell Biol.
,
136
(
3
), pp.
729
43
.
15.
Scott
,
J. E.
,
1988
, “
Proteoglycan-Fibrillar Collagen Interactions
,”
Biochem. J.
,
252
(
2
), pp.
313
23
.
16.
Vogel
,
K. G.
, and
Heinegard
,
D.
,
1985
, “
Characterization of Proteoglycans from Adult Bovine Tendon
,”
J. Biol. Chem.
,
260
(
16
), pp.
9298
306
.
17.
Flint
,
M. H.
,
Craig
,
A. S.
,
Reilly
,
H. C.
,
Gillard
,
G. C.
, and
Parry
,
D. A.
,
1984
, “
Collagen Fibril Diameters and Glycosaminoglycan Content of Skins--Indices of Tissue Maturity and Function
,”
Connect. Tissue Res.
,
13
(
1
), pp.
69
81
.
18.
Pins
,
G. D.
,
Christiansen
,
D. L.
,
Patel
,
R.
, and
Silver
,
F. H.
,
1997
, “
Self-Assembly of Collagen Fibers: Influence of Fibrillar Alignment and Decorin on Mechanical Properties
,”
Biophys. J.
,
73
(
4
), pp.
2164
72
.
19.
Lam
,
T. C.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1993
, “
Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation
,”
J. Biomech.
,
26
(
1
), pp.
9
17
.
20.
Chimich
,
D.
,
Shrive
,
N. G.
,
Frank
,
C. B.
,
Marchuk
,
L.
, and
Bray
,
R.
,
1992
, “
Water Content Alters Viscoelastic Behavior of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
,
25
(
8
), pp.
831
7
.
21.
Liu
,
X.
,
Wu
,
H.
,
Byrne
,
M.
,
Jeffrey
,
J.
,
Krane
,
S.
, and
Jaenisch
,
R.
,
1995
, “
A Targeted Mutation at the Known Collagenase Cleavage Site in Mouse Type I Collagen Impairs Tissue Remodeling
,”
Cell Biol.
,
130
(
1
), pp.
227
237
.
22.
Bonadio
,
J.
,
Saunders
,
T. L.
,
Tsai
,
E.
,
Goldstein
,
S. A.
,
Morris-Wiman
,
J.
,
Brinkley
,
L.
,
Dolan
,
D. F.
,
Altschuler
,
R. A.
,
Hawkins
, Jr.,
J. E.
, and
Bateman
,
J. F.
,
1990
, “
Transgenic Mouse Model of the Mild Dominant Form of Osteogenesis Imperfecta
,”
Proc. Natl. Acad. Sci. U.S.A.
,
87
(
18
), pp.
7145
9
.
23.
Derwin
,
K. A.
,
Soslowsky
,
L. J.
,
Kimura
,
J. H.
, and
Plaas
,
A. H.
,
2001
, “
Proteoglycans and Glycosaminoglycan Fine Structure in the Mouse Tail Tendon Fascicle
,”
J. Orthop. Res.
,
19
(
2
), pp.
269
77
.
24.
Clark
,
R. T.
,
Johnson
,
T. L.
,
Schalet
,
B. J.
,
Davis
,
L.
,
Gaschen
,
V.
,
Hunziker
,
E. B.
,
Oldberg
,
A.
, and
Mikic
,
B.
,
2001
, “
GDF-5 Deficiency in Mice Leads to Disruption of Tail Tendon Form and Function
,”
Connect. Tissue Res.
,
42
(
3
), pp.
175
186
.
25.
Christiansen
,
D. L.
,
Huang
,
E. K.
, and
Silver
,
F. H.
,
2000
, “
Assembly of Type I Collagen: Fusion of Fibril Subunits and the Influence of Fibril Diameter on Mechanical Properties
,”
Matrix Biol.
,
19
(
5
), pp.
409
420
.
26.
Mow, V. C., Flatow, E. L., and Ateshian, G. A., 2000, “Biomechanics,” in: Buckwalter, J. A., Einhorn, T. A., Simon, S. R., eds., Orthopaedic Basic Science, 2nd Ed., American Academy of Orthopaedic Surgeons, Chap. 5.
27.
Lin
,
T. W.
,
White
,
S. M.
,
Robinson
,
P. S.
,
Derwin
,
K. A.
,
Plaas
,
A. H.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
,
2002
, “
Relating Extracellular Matrix Composition with Function -- A Study Using Transgenic Mouse Tail Tendon Fascicles
,”
Trans. Orthop. Res.
,
27
, pp.
45
45
.
28.
Haut
,
T. L.
, and
Haut
,
R. C.
,
1997
, “
The State of Tissue Hydration Determines the Strain-Rate Sensitive Stiffness of Human Patellar Tendon
,”
J. Biomech.
,
30
(
1
), pp.
79
81
.
29.
Pioletti
,
D. P.
, and
Rakotomanana
,
L. R.
, “
On the Independence of Time and Strain Effects in the Stress Relaxation of Ligaments and Tendons
,”
J. Biomech.
,
33
(
12
), pp.
1729
1732
.
30.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
8
.
You do not currently have access to this content.