The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional–integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results.

1.
Tortora
,
G.
, 1997, “
Introduction to the Human Body
.
The Essentials of Anatomy and Physiology
”, 4th ed.,
Addison-Wesley Longman, Inc.
, New York.
2.
Vander
,
A.
,
Sherman
,
J.
, and
Luciano
,
D.
, 2001, “
Human Physiology—The Mechanisms of Body Function
,” 8th ed.,
McGraw-Hill
, New York.
3.
Riggs
,
H.
, and
Rupp
,
C.
, 1963. “
Variation in Form of Circle of Willis. The Relation of the Variations to Collateral Circulation: Anatomic Analysis
,”
Arch. Neurol.
0003-9942,
8
, pp.
24
30
.
4.
Alpers
,
B.
,
Berry
,
R.
, et al.
, 1959, “
Anatomical Studies of the Circle of Willis in Normal Brain
,”
Arch. Neurol.
0003-9942,
81
, pp.
409
418
.
5.
Alpers
,
B.
, and
Berry
,
R.
, 1963, “
Circle of Willis in Cerebral Vascular Disorders, The Anatomical Structure
,”
Arch. Neurol.
0003-9942,
8
, pp.
398
402
.
6.
Hillen
,
B.
,
Drinkenburg
,
A.
, et al.
, 1988. “
Analysis of Flow and Vascular Resistance in a Model of the Circle of Willis
,”
J. Biomech.
0021-9290,
21
, pp.
807
814
.
7.
Cassot
,
F.
,
Zagzoule
,
M.
, and
Marc-Vergnes
,
J.
, 2000, “
Hemodynamic Role of the Circle of Willis in Stenoses of Internal Carotid Arteries. An Analytical Solution of a Linear Model
,”
J. Biomech.
0021-9290,
33
, pp.
395
405
.
8.
Piechnik
,
S.
,
Czosnyka
,
M.
,
Cieślicki
,
K.
, and
Cieśla
,
D.
, 2002, “
Problems in Application of Purely Linear Models in Cerebral Circulation
,”
J. Biomech.
0021-9290,
35
, pp.
553
554
.
9.
Ferrandez
,
A.
,
David
,
T.
, et al.
, 2002. “
Numerical Models of Auto-Regulation and Blood Flow in the Cerebral Circulation
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
5
, pp.
7
19
.
10.
Moorhead
,
K. T.
,
Doran
,
C. V.
,
David
,
T.
, and
Chase
,
J. G.
, 2003. “
Lumped Parameter and Feedback Control Models of the Auto-Regulatory Response in the Circle of Willis
,”
Conference Proceedings, World Congress on Medical Physics and Biomedical Engineering
.
11.
Lodi
,
C. A.
, and
Ursino
,
M.
, 1999, “
Hemodynamic Effect of Cerebral Vasospasm in Humans: A Modeling Study
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
257
273
.
12.
Hudetz
,
A. G.
,
Halsey
,
J. H.
, Jr.
,
Horton
,
C. H.
,
Conger
,
K. A.
, and
Reneau
,
D. D.
, 1982, “
Mathematical Simulation of Cerebral Blood Flow in Focal Ischemia
,”
Stroke
0039-2499,
13
, pp.
693
700
.
13.
Hillen
,
B.
,
Hoogstraten
,
H.
, et al.
, 1986, “
A Mathematical Model of the Flow in the Circle of Willis
,”
J. Biomech.
0021-9290,
19
, pp.
187
194
.
14.
David
,
T.
,
Brown
,
M. D.
, and
Ferrandez
,
A.
, 2003, “
Numerical Models of Auto-Regulation and Blood Flow in the Cerebral Circulation
,”
Int. J. Numer. Methods Fluids
0271-2091,
43
, pp.
701
713
.
15.
Fung
,
Y. C.
, 1990,
Biomechanics: Motion, Flow, Stress and Growth
,
Springer-Verlag
, New York.
16.
Newell
,
D.
,
Aaslid
,
R.
, et al.
, 1994, “
Comparison of Flow and Velocity During Dynamic Autoregulation Testing in Humans
,”
Stroke
0039-2499,
25
, pp.
793
797
.
17.
Ferrandez
,
A.
, 2000, “
Computational Models of Blood Flow in the Circle of Willis
,” Ph.D. thesis, School of Mechanical Engineering, University of Leeds, United Kingdom.
18.
Gao
,
E.
,
Young
,
W. L.
,
Pile-Spellman
,
J.
,
Ornstein
,
E.
, and
Ma
,
Q.
, 1998, “
Mathematical Considerations for Modelling Cerebral Blood Flow Autoregulation to Systemic Arterial Pressure
,”
Am. J. Phys.
0002-9505,
274
, pp.
1023
, 1031.
19.
Mancia
,
G.
, and
Mark
,
A. L.
(1983), “
Arterial Baroreflexes in Humans
,” Vol.
3
of
Handbook of Physiology
, Sec. 2,
American Physiological Society
, New York.
20.
van der Zwan
,
A.
,
Hillen
,
B.
, et al.
, 1993, “
A Quantitative Investigation of the Variability of the Major Cerebral Arterial Territories
,”
Stroke
0039-2499,
24
, pp.
1951
1959
.
21.
Collins
,
R. E.
,
Flow of Fluids Through Porous Materials
,
Reinhold
, New York, 1961.
22.
Kim
,
C. S.
, et al.
(2004), “
Numerical Models of Human Circulatory System Under Altered Gravity: Brain Circulation
,” Paper AIAA 2004-1092, in 42nd AIAA Aerosciences Meeting, 2004, Reno, NV, AIAA, City.
You do not currently have access to this content.