Background: Nowadays, shape memory alloys (SMAs) and in particular Ni–Ti alloys are commonly used in bioengineering applications as they join important qualities as resistance to corrosion, biocompatibility, fatigue resistance, MR compatibility, kink resistance with two unique thermo-mechanical behaviors: the shape memory effect and the pseudoelastic effect. They allow Ni–Ti devices to undergo large mechanically induced deformations and then to recover the original shape by thermal loading or simply by mechanical unloading. Method of approach: A numerical model is developed to catch the most significant SMA macroscopic thermo-mechanical properties and is implemented into a commercial finite element code to simulate the behavior of biomedical devices. Results: The comparison between experimental and numerical response of an intravascular coronary stent allows to verify the model suitability to describe pseudo-elasticity. The numerical study of a spinal vertebrae spacer, where the effects of different geometries and material characteristic temperatures are investigated, allows to verify the model suitability to describe shape memory effect. Conclusion: the results presented show the importance of computational studies in designing and optimizing new biomedical devices.

1.
Duerig
,
T. W.
,
Melton
,
K. N.
,
Stökel
,
D.
, and
Wayman
,
C. M.
, Eds., 1990,
Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
, London.
2.
Pelton
,
A. R.
,
Hodgson
,
D.
, and
Duerig
,
T.
, Eds., 1995,
Proc. of First Int. Conf. on Shape Memory and Superelastic Technologies
,
Asilomar
, CA.
3.
Pelton
,
A. R.
,
Hodgson
,
D.
, and
Duerig
,
T.
, Eds., 1997,
Proc. of Second Int. Conf. on Shape Memory and Superelastic Technologies
,
Asilomar
, CA.
4.
Barras
,
C. D. J.
, and
Myers
,
K. A.
, 2000, “
Nitinol—Its Use in Vascular Surgery and Other Applications
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
19
, pp.
564
569
.
5.
Russel
,
S. M.
, and
Pelton
,
A. R.
, Eds., 2000,
Proc. of Third Int. Conf. on Shape Memory and Superelastic Technologies
,
Asilomar
, CA.
6.
Funakubo
,
H.
, 1987,
Shape Memory Alloys
,
Gordon and Breach
, New York.
7.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
, Cambridge.
8.
Wayman
,
C. M.
, 1992, “
Shape Memory and Related Phenomena
,”
Prog. Mater. Sci.
0079-6425,
36
, pp.
203
224
.
9.
Trepanie
,
C.
,
Leung
,
T. K.
,
Tabrizian
,
M.
,
Yahia
,
L. H.
,
Bienvenu
,
J. G.
,
Tanguay
,
J. F.
,
Piron
,
D. L.
, and
Bilodeau
,
L.
, 1999, “
Preliminary Investigation of the Effects of Surface Treatments on Biological Response to Shape Memory NiTi Stents
,”
J. Biomed. Mater. Res.
0021-9304,
48
, pp.
165
171
.
10.
Thierry
,
B.
,
Merhi
,
Y.
,
Bilodeau
,
L.
,
Trepanier
,
C.
, and
Tabrizian
,
M.
, 2002, “
Nitinol Versus Stainless Steel Stents: Acute Thrombogenicity Study in an Ex Vivo Porcine Model
,”
Biomaterials
0142-9612,
23
, pp.
2997
3005
.
11.
Ryhnen
,
J.
, 1995, “
Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy
,” PhD Dissertation, Oulu University.
12.
Duerig
,
T. W.
,
Pelton
,
A. R.
, and
Stckel
,
D.
, 1997, “
Superelastic Nitinol for Medical Devices
,”
Medical Plastics Biomater.
,
2
, pp.
30
43
.
13.
Bruckheimer
,
E.
,
Judelman
,
A. G.
,
Bruckheimer
,
S. D.
,
Tavori
,
I.
,
Naor
,
G.
, and
Katzen
,
B. T.
, 2003, “
In Vitro Evaluation of a Retrievable Low-Profile Nitinol Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
1051-0443,
14
, pp.
469
474
.
14.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ojha
,
M.
, 2001, “
In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion
,”
J. Vasc. Interv. Radiol.
1051-0443,
12
, pp.
613
618
.
15.
Simon
,
M.
,
Rabkin
,
D. J.
,
Kleshinski
,
S.
,
Kim
,
D.
, and
Ransil
,
B. J.
, 1993, “
Comparative Evaluation of Clinically Available Inferior Vena Cava Filters with an In Vitro Physiologic Simulation of the Vena Cava
,”
Radiology
0033-8419,
189
, pp.
769
774
.
16.
Kong
,
H.
,
Gu
,
X.
,
Titus
,
J. L.
,
Kim
,
T. H.
,
Urness
,
M.
,
Han
,
Y. M.
,
Hessliein
,
P.
,
Bass
,
J.
,
Chun
,
M.
, and
Hunter
,
D. W.
, 2002, “
Creation of an Intra-Atrial Communication with a New Amplatzer Shunt Prosthesis: Preliminary Results in a Swine Model
,”
Catheter. Cardiovasc. Interv.
,
56
, pp.
267
271
.
17.
Walsh
,
K. P.
, and
Maadi
,
I. M.
, 2000, “
The Amplatzer Septal Occluder
,”
Cardiol. Young
1047-9511
10
(
5
), pp.
493
501
.
18.
Smits
,
M.
,
Huibregtse
,
K.
, and
Tytgat
,
G.
, 1995, “
Results of the New Nitinol Self-Expandable Stents for Distal Biliary Structures
,”
Endoscopy
0013-726X,
27
, pp.
505
508
.
19.
Tyagi
,
S.
,
Singh
,
S.
,
Mukhopadhyay
,
S.
, and
Kaul
,
U. A.
, 2003, “
Self- and Balloon-Expandable Stent Implantation for Severe Native Coarctation of Aorta in Adults
,”
Am. Heart J.
0002-8703,
146
, pp.
920
928
.
20.
Dai
,
K. R.
,
Hou
,
X. K.
,
Sun
,
Y. H.
,
Tang
,
R. G.
,
Qiu
,
S. J.
, and
Ni
,
C.
, 1993, “
Treatment of Intra-Articular Fractures with Shape Memory Compression Staples
,”
Injury
0020-1383,
24
, pp.
651
655
.
21.
Sanders
,
J. O.
,
Sanders
,
A. E.
,
More
,
R.
, and
Ashman
,
R. B.
, 1993, “
A Preliminary Investigation of Shape Memory Alloys in the Surgical Correction of Scoliosis
,”
Spine
0362-2436,
18
, pp.
1640
1646
.
22.
Wever
,
D. J.
,
Elstrodt
,
J. A.
,
Veldhuizen
,
A. G.
, and
v Horn
,
J. R.
, 2002, “
Scoliosis Correction with Shape Memory Metal: Results of an Experimental Study
,”
Eur. Spine J.
0940-6719,
11
, pp.
100
106
.
23.
Ryhanen
,
J.
,
Niemela
,
E.
,
Kaarela
,
O.
, and
Raatikainen
,
T.
, 2003, “
Stabilization of Acute, Complete Acromioclavicular Joint Dislocations with a New C Hook Implant
,”
J. Shoulder Elbow Surg.
1058-2746,
12
, pp.
442
445
.
24.
Kourambas
,
J.
,
Del vecchio
,
F. C.
,
Munver
,
R.
, and
Preminger
,
G. M.
, 2000, “
Nitinol Stone Retrieval-Assisted Ureteroscopic Management of Lower Pole Renal Calculi
,”
Urology
0090-4295,
56
, pp.
935
939
.
25.
Song
,
H. Y.
,
Shin
,
J. H.
,
Lim
,
J. O.
,
Kim
,
T. H.
,
Lee
,
G. H.
, and
Lee
,
S. K.
, 2004, “
Use of a Newly Designed Multifunctional Coil Catheter for Stent Placement in the Upper Gastrointestinal Tract
,”
J. Vasc. Interv. Radiol.
1051-0443,
15
, pp.
369
373
.
26.
Sundaram
,
C. P.
,
Ono
,
Y.
,
Landman
,
J.
,
Rehman
,
J.
, and
Clayman
,
R. V.
, 2002, “
Hydrophilic Guide Wire Technique to Facilitate Organ Entrapment Using a Laparoscopic Sack During Laparoscopy
,”
J. Urol. (Baltimore)
0022-5347,
167
, pp.
1376
1377
.
27.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
, 1997, “
Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
146
, pp.
281
312
.
28.
Peyroux
,
R.
,
Chrysochoos
,
A.
,
Licht
,
C.
, and
Lobel
,
M.
, 1998, “
Thermomechanical Couplings and Pseudoelasticity of Shape Memory Alloys
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
489
509
.
29.
Souza
,
A. C.
,
Mamiya
,
E. N.
, and
Zouain
,
N.
, 1998, “
Three-Dimensional Model for Solids Undergoing Stress-Induced Phase Transformations
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
789
806
.
30.
Idesman
,
A. V.
,
Levitas
,
V. I.
, and
Stein
,
E.
, 1999, “
Elastoplastic Materials with Martensitic Phase Transition and Twinning at Finite Strain: Numerical Solution with the Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
173
, pp.
71
98
.
31.
Qidwai
,
M. A.
, and
Lagoudas
,
D. C.
, 2000, “
Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
1123
1168
.
32.
Qidwai
,
M. A.
, and
Lagoudas
,
D. C.
, 2000, “
On Thermomechanics and Transformation Surfaces of Polycristalline NiTi Shape Memory Alloy Material
,”
Int. J. Plast.
0749-6419,
16
, pp.
1309
1343
.
33.
Auricchio
,
F.
, and
Sacco
,
E.
, 2001, “
Thermo-Mechanical Modelling of a Superelastic Shape-Memory Wire under Cyclic Stretching-Bending Loadings
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
6123
6145
.
34.
Govindjee
,
S.
, and
Miehe
,
C.
, 2001, “
A Multi-Variant Martensitic Phase Transformation Model: Formulation and Numerical Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
215
238
.
35.
Peng
,
X.
,
Yang
,
Y.
, and
Huang
,
S.
, 2001, “
A Comprehensive Description for Shape Memory Alloys with a Two-Phase Constitutive Model
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
6925
6940
.
36.
Ziolkowski
,
A.
, 2001, “
Finite Element Modelling of SMA Structures
,”
Workshop on Shape Memory Alloy Materials-Warsaw
, 3–6 September, pp.
1
33
.
37.
Liew
,
K. M.
,
Kitipornachai
,
S.
,
Ng
,
T. Y.
, and
Zou
,
G. P.
, 2002, “
Multi-Dimensional Superelastic Behavior of Shape Memory Alloys Via Nonlinear Finite Element Method
,”
Eng. Struct.
0141-0296,
24
, pp.
51
57
.
38.
Auricchio
,
F.
, and
Petrini
,
L.
, 2004, “
A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
807
836
.
39.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
Macmillan
, New York.
40.
Fremond
,
M.
, 1996,
CISM Courses and Lectures: Shape Memory Alloys
(
Springer
, Wien, New York)
351
, pp.
1
68
.
41.
Patoor
,
E.
,
Eberhardt
,
A.
, and
Berveiller
,
M.
, 1996, “
Micromechanical Modelling of Superelasticity in Shape Memory Alloys
,”
J. Phys. IV
1155-4339,
C1–6
, pp.
277
292
.
42.
Manach
,
P. Y.
, and
Favier
,
D.
, 1997, “
Shear and Tensile Thermomechanical Behavior of Equiatomic NiTi Alloy
,”
Mater. Sci. Eng., A
0921-5093,
222
, pp.
45
57
.
43.
Carter
,
A. J.
,
Scott
,
D.
,
Laird
,
J. R.
,
Bailey
,
L.
,
Kovach
,
J. A.
,
Hoopes
,
T. G.
,
Pierce
,
K.
,
Heath
,
K.
,
Hess
,
K.
,
Farb
,
A.
, and
Virmani
,
R.
, 1998, “
Progressive Vascular Remodeling and Reduced Neointimal Formation after Placement of a Thermoelastic Self-Expanding Nitinol Stent in an Experimental Model
,”
Cathet. Cardiovasc. Diagn.
0098-6569,
44
, pp.
193
201
.
44.
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Kawashima
,
A.
,
Matsui
,
S.
,
Komori
,
H.
,
Tsuji
,
T.
,
Motohara
,
S.
, and
Uehata
,
H.
, 2000, “
Initial and 6-Month Results of Biodegradable Poly-l-lactic Acid Coronary Stents in Humans
,”
Circulation
0009-7322,
102
, pp.
399
404
.
45.
Lendlein
,
A.
, and
Langer
,
R.
, 2002, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
0036-8075,
296
, pp.
1673
1676
.
46.
Wache
,
H. M.
,
Tartakowska
,
D. J.
,
Hentrich
,
A.
, and
Wagner
,
M. H.
, 2003, “
Development of a Polymer Stent with Shape Memory Effect as a Drug Delivery System
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
14
, pp.
109
112
.
47.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
M.
,
Schievano
,
S.
,
Dubini
,
G.
, and
Auricchio
,
F.
, 2004, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction with the Vascular Wall
,”
Biomech. Model. Mechanobiol.
,
2
(
4
), pp.
205
217
.
48.
Nachemson
,
A.
, 1966, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
0009-921X,
45
, pp.
107
122
.
You do not currently have access to this content.