We have utilized a computational model of the expansion of a microbubble in a liquid-filled flexible tube to investigate the potential for acoustic vaporization of perfluorocarbon droplets to damage blood vessels during a novel gas embolotherapy technique for the potential treatment of tumors. This model uses a fixed grid, multi-domain, interface tracking, direct numerical simulation method that treats all interfaces and boundaries as sharp discontinuities for high accuracy. In the current work, we examined effects of initial bubble size on the flows and wall stresses that result from droplet vaporization. The remaining dimensionless parameters that govern the system response (Reynolds, Weber, and Strouhal numbers, initial bubble pressure, and wall stiffness and tension) were selected to model an arteriole. The results for a flexible tube are significantly different from those for a rigid tube. Two major flow regimes occur due to the combined effect of bubble and tube deformation: in flow at the tube ends and out flow near the bubble surface. The flexibility of the tube largely dissipates the extreme pressure that develops in the rigid tube model. Both the magnitude and the overall expansion time of the rapidly changing pressure are greatly reduced in the flexible tube. Smaller initial bubble diameters, relative to the vessel diameter, result in lower wall stresses. This study indicates that wall flexibility can significantly influence the wall stresses that result from acoustic vaporization of intravascular perfluorocarbon droplets, and suggests that acoustic activation of droplets in larger, more flexible vessels may be less likely to damage or rupture vessels than activation in smaller and stiffer vessels.

1.
Bull
,
J. L.
, 2005, “
Cardiovascular Bubble Dynamics
,”
Crit. Rev. Biomed. Eng.
0278-940X,
33
(
4
), pp.
299
346
.
2.
Halpern
,
D.
,
Jiang
,
Y.
, and
Himm
,
J. F.
, 1999, “
Mathematical Model of Gas Bubble Evolution in a Straight Tube
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
505
513
.
3.
Cavanagh
,
D. P.
, and
Eckmann
,
D. M.
, 1999, “
Interfacial Dynamics of Stationary Gas Bubbles in Flows in Inclined Tubes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
225
244
.
4.
Eckmann
,
D. M.
, and
Cavanagh
,
D. P.
, 2003, “
Bubble Detachment by Diffusion-Controlled Surfactant Adsorption
,”
Colloids Surf., A
0927-7757,
227
(
1–3
), pp.
21
33
.
5.
Eckmann
,
D. M.
,
Cavanagh
,
D. P.
, and
Branger
,
A. B.
, 2001, “
Wetting Characteristics of Aqueous Surfactant-Laden Drops
,”
J. Colloid Interface Sci.
0021-9797,
242
(
2
), pp.
386
394
.
6.
Eckmann
,
D. M.
, and
Diamond
,
S. L.
, 2004, “
Surfactants Attenuate Gas Embolism-induced Thrombin Production
,”
Anesthesiology
0003-3022,
100
(
1
), pp.
77
84
.
7.
Branger
,
A. B.
, and
Eckmann
,
D. M.
, 1999, “
Theoretical and Experimental Intravascular Gas Embolism Absorption Dynamics
,”
J. Appl. Physiol.
8750-7587,
87
(
4
), pp.
1287
1295
.
8.
Branger
,
A. B.
, and
Eckmann
,
D. M.
, 2002, “
Accelerated Arteriolar Gas Embolism Reabsorption by an Exogenous Surfactant
,”
Anesthesiology
0003-3022,
96
(
4
), pp.
971
979
.
9.
Branger
,
A. B.
,
Lambertsen
,
C. J.
, and
Eckmann
,
D. M.
, 2001, “
Cerebral Gas Embolism Absorption During Hyperbaric Therapy: Theory
,”
J. Appl. Physiol.
8750-7587,
90
(
2
), pp.
593
600
.
10.
Muth
,
C. M.
, and
Shank
,
E. S.
, 2000, “
Primary Care: Gas Embolism
,”
N. Engl. J. Med.
0028-4793,
342
(
7
), pp.
476
482
.
11.
Boehm
,
T.
,
Folkman
,
J.
,
Browder
,
T.
, and
O’Reilly
,
M. S.
, 1997, “
Antiangiogenic Therapy of Experimental Cancer Does not Induce Acquired Drug Resistance
,”
Nature (London)
0028-0836,
390
, pp.
404
407
.
12.
Di Segni
,
R.
,
Young
,
A. T.
,
Zhong
,
Q.
, and
Castaneda-Zuniga
,
W. R.
, 1997, “
Embolotherapy: Agents, Equipment, and Techniques.
,”
Interventional Radiology
,
W. R.
Castaneda-Zuniga
,
Williams and Wilkins
,
Baltimore
, pp.
81
84
.
13.
Nakagawa
,
N.
, and
Castaneda-Zuniga
,
W. R.
, 1997, “
Transcatheter Chemoembolization for Hepatocellular Carcinoma and Other Promising Transarterial Therapies
,”
Interventional Radiology
,
W. R.
Castaneda-Zuniga
,
Williams and Wilkins
,
Baltimore
.
14.
Nakamura
,
H.
,
Hashimoto
,
T.
,
Oi
,
H.
, and
Sawada
,
S.
, 1989, “
Transcatheter Oily Chemoembolization of Hepatocellular-Carcinoma
,”
Radiology
0033-8419,
170
(
3
), pp.
783
786
.
15.
Kripfgans
,
O. D.
,
Fabiilli
,
M. L.
,
Carson
,
P. L.
, and
Fowlkes
,
J. B.
, 2004, “
On the Acoustic Vaporization of Micrometer-Sized Droplets
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
1
), pp.
272
281
.
16.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Miller
,
D. L.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
, 2000, “
Acoustic Droplet Vaporization for Therapeutic and Diagnonstic Applications
,”
Ultrasound Med. Biol.
0301-5629,
26
(
7
), pp.
1177
1189
.
17.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Woydt
,
M.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
, 2002, “
In Vivo Droplet Vaporization for Occlusion Therapy and Phase Aberration Correction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
49
(
6
), pp.
726
738
.
18.
Calderon
,
A. J.
, and
Bull
,
J. L.
, 2004, “
Homogeneity of Bubble Transport Through a Bifurcation for Gas Embolotherapy
,”
FASEB J.
0892-6638,
18
(
4
), p.
A373
.
19.
Calderon
,
A. J.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
, 2005, “
Bubble Splitting in Bifurcating Tubes: A Model Study of Cardiovascular Gas Emboli Transport
,”
J. Appl. Physiol.
8750-7587,
99
, pp.
479
487
.
20.
Eshpuniyani
,
B.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
, 2005, “
A Bench Top Experimental Model of Bubble Transport in Multiple Arteriole Bifurcations
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
6
), pp.
865
872
.
21.
Skyba
,
D. M.
,
Price
,
R. J.
,
Linka
,
A. Z.
,
Skalak
,
T. C.
, and
Kaul
,
S.
, 1998, “
Direct in Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and its Local Effects on Tissue
,”
Circulation
0009-7322,
98
(
4
), pp.
290
293
.
22.
Song
,
J.
,
Cottler
,
P. S.
,
Klibanov
,
A. L.
,
Kaul
,
S.
, and
Price
,
R. J.
, 2004, “
Microvascular Remodeling and Accelerated Hyperemia Blood Flow Restoration in Arterially Occluded Skeletal Muscle Exposed to Ultrasonic Microbubble Destruction
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
, pp.
H2754
H2761
.
23.
Song
,
J.
,
Qi
,
M.
,
Kaul
,
S.
, and
Price
,
R. J.
, 2002, “
Stimulation of Arteriogenesis in Skeletal Muscle by Microbubble Destruction With Ultrasound
,”
Circulation
0009-7322,
106
(
12
), pp.
1550
1555
.
24.
Nerem
,
R. M.
, 1993, “
Hemodynamics and the Vascular Endothelium
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4
), pp.
510
514
.
25.
Chiu
,
J. J.
,
Wang
,
D. L.
,
Chien
,
S.
,
Skalak
,
R.
, and
Usami
,
S.
, 1998, “
Effects of disturbed flow on endothelial cells
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
2
8
.
26.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
, 1995, “
Calcium Responses Of Endothelial-Cell Monolayers Subjected to Pulsatile and Steady Laminar-Flow Differ
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
38
(
2
), pp.
C367
-
C375
.
27.
Davies
,
P. F.
,
Barbee
,
K. A.
,
Volin
,
M. V.
,
Robotewskyj
,
A.
,
Chen
,
J.
,
Joseph
,
L.
,
Griem
,
M. L.
,
Wernick
,
M. N.
,
Jacobs
,
E.
,
Polacek
,
D. C.
,
DePaola
,
N.
, and
Barakat
,
A. I.
, 1997, “
Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction
,”
Annu. Rev. Physiol.
0066-4278,
59
, pp.
527
549
.
28.
Nerem
,
R. M.
,
Harrison
,
D. G.
,
Taylor
,
W. R.
, and
Alexander
,
R. W.
, 1993, “
Hemodynamics and Vascular Endothelial Biology
,”
J. Cardiovasc. Pharmacol.
0160-2446,
21
, pp.
S6
-
S10
.
29.
Badimon
,
L.
,
Badimon
,
J. J.
,
Penny
,
W.
,
Webster
,
M. W.
,
Chesebro
,
J. H.
, and
Fuster
,
V.
, 1992, “
Endothelium and Atherosclerosis
,”
J. Hypertens.
0263-6352,
10
, pp.
S43
-
S50
.
30.
Ye
,
T.
, and
Bull
,
J. L.
, 2004, “
Direct Numerical Simulations of Micro-Bubble Expansion in Gas Embolotherapy.
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
745
759
.
31.
Grotberg
,
J. B.
, 1994, “
Pulmonary Flow and Transport Phenomena
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
529
571
.
32.
Grotberg
,
J. B.
, 2001, “
Respiratory Fluid Mechanics and Transport Processes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
421
457
.
33.
Grotberg
,
J. B.
, and
Jensen
,
O. E.
, 2004, “
Biofluid Mechanics in Flexible Tubes
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
121
147
.
34.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
35.
Kamm
,
R. D.
, and
Pedley
,
T. J.
, 1989, “
Flow in Collapsible Tubes: A Brief Review
,”
ASME J. Biomech. Eng.
0148-0731,
111
, pp.
177
179
.
36.
Shapiro
,
A. H.
, 1977, “
Steady Flow in Collapsible Tubes
,”
ASME J. Biomech. Eng.
0148-0731,
99
, pp.
126
147
.
37.
Dawson
,
S. V.
, and
Elliott
,
E. A.
, 1977, “
Wave-Speed Limitation on Expiratory Flow—A Unifying Concept
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
43
(
3
), pp.
498
515
.
38.
Bull
,
J. L.
,
Reikert
,
C. A.
,
Tredici
,
S.
,
Komori
,
E.
,
Frank
,
E. L.
,
Brant
,
D. O.
,
Grotberg
,
J. B.
, and
Hirschl
,
R. B.
, 2005, “
Flow Limitation in Liquid-Filled Lungs: Effects of Liquid Properties and Lung Compliance
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
630
636
.
39.
Gaver
,
D. P.
,
Halpern
,
D.
,
Jensen
,
O. E.
, and
Grotberg
,
J. B.
, 1996, “
The Steady Motion of a Semi-Infinite Bubble Through a Flexible-Walled Channel
,”
J. Fluid Mech.
0022-1120,
319
, pp.
25
65
.
40.
Howell
,
P. D.
,
Waters
,
S. L.
, and
Grotberg
,
J. B.
, 2000, “
The Propagation of a Liquid Bolus Along a Liquid-Lined Flexible Tube
,”
J. Fluid Mech.
0022-1120,
406
, pp.
309
335
.
41.
Heil
,
M.
, 2000, “
Finite Reynolds Number Effects in the Propagation of an Air Finger Into a Liquid-Filled Flexible-Walled Channel
,”
J. Fluid Mech.
0022-1120,
424
, pp.
21
44
.
42.
Jensen
,
O. E.
,
Horsburgh
,
M. K.
,
Halpern
,
D.
, and
Gaver
,
D. P.
, 2002, “
The Steady Propagation of a Bubble in a Flexible-walled Channel: Asymptotic and Computational Models
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
443
457
.
43.
Hazel
,
A. L.
, and
Heil
,
M.
, 2003, “
Three-Dimensional Airway Reopening: The Steady Propagation of a Semi-Infinite Bubble Into a Buckled Elastic Tube
,”
J. Fluid Mech.
0022-1120,
478
, pp.
47
70
.
44.
Naire
,
S.
, and
Jensen
,
O. E.
, 2003, “
An Asymptotic Model of Unsteady Airway Reopening
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
823
831
.
45.
Fung
,
Y. C.
, 1997,
Biomechanics: Circulation
,
Springer
,
New York
.
46.
Ory
,
E.
,
Yuan
,
H.
,
Prosperetti
,
A.
,
Popinet
,
S.
, and
Zaleski
,
S.
, 2000, “
Growth and Collapse of a Vapor Bubble in a Narrow Tube
,”
Phys. Fluids
1070-6631,
12
(
6
), pp.
1268
1277
.
47.
Atabek
,
H. B.
, and
Lew
,
H. S.
, 1966, “
Wave Propagation Through a Viscous Incompressible Fluid Contained in an Initially Stressed Elastic Tube
,”
Biophys. J.
0006-3495,
6
(
4
), pp.
481
503
.
48.
Ye
,
T.
,
Shyy
,
W.
,
Tai
,
C. F.
, and
Chung
,
J. N.
, 2004, “
Assessment of Sharp- and Continuous-Interface Methods for Drop in Static Equilibrium
,”
Comput. Fluids
0045-7930,
33
(
7
), pp.
917
926
.
49.
Pozrikidis
,
C.
, 2001, “
Interfacial Dynamics for Stokes Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
250
301
.
50.
Power
,
H.
, and
Wrobel
,
L. C.
, 1995,
Boundary Integral Methods in Fluid Mechanics
,
Computational Mechanics
,
Southampton
.
51.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface-Tension
,”
J. Comput. Phys.
0021-9991,
100
(
2
), pp.
335
354
.
52.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
156
(
2
), pp.
209
240
.
53.
Ye
,
T.
,
Shyy
,
W.
, and
Chung
,
J. N.
, 2001, “
A Fixed-Grid, Sharp-Interface Method for Bubble Dynamics and Phase Change
,”
J. Comput. Phys.
0021-9991,
174
(
2
), pp.
781
815
.
54.
Chorin
,
A. J.
, 1968, “
Numerical Solution of Navier-Stokes Equations
,”
Math. Comput.
0025-5718,
22
(
104
), pp.
745
762
.
55.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
(
2
), pp.
308
323
.
56.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
, 1994, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
114
(
1
), pp.
18
33
.
57.
Pedley
,
T. J.
, 1980,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge
.
58.
Fung
,
Y. C.
, and
Zweifach
,
B. W.
, 1971, “
Microcirculation—Mechanics of Blood Flow in Capillaries
,”
Annu. Rev. Fluid Mech.
0066-4189,
3
, pp.
189
210
.
You do not currently have access to this content.