The present work deals with the application of an innovative in-house developed wavelet-based methodology for the analysis of the acceleration responses of a human head complex model as a simulated diffused oedema progresses. The human head complex has been modeled as a structure consisting of three confocal prolate spheroids, whereas the three defined regions by the system of spheroids, from the outside to the inside, represent the scull, the region of cerebrospinal fluid, and the brain tissue. A Dirac-like pulse has been used to excite the human head complex model and the acceleration response of the system has been calculated and analyzed via the wavelet-based methodology. For the purpose of the present analysis, a wave propagation commercial finite element code, LS-DYNA 3D, has been used. The progressive diffused oedema was modeled via consecutive increases in brain volume accompanied by a decrease in brain density. It was shown that even a small increase in brain volume (at the level of 0.5%) can be identified by the effect it has on the vibration characteristics of the human head complex. More precisely, it was found that for some of the wavelet decomposition levels, the energy content changes monotonically as the brain volume increases, thus providing a useful index of monitoring an oncoming brain oedema before any brain damage appears due to uncontrolled intracranial hypertension. For the purpose of the present work and for the levels of brain volume increase considered in the present analysis, no pressure increase was assumed into the cranial vault and, associatively, no brain compliance variation.

1.
Dassios
,
G.
,
Kiriakopoulos
,
M. K.
, and
Kostopoulos
,
V.
, 1998, “
On the Sensitivity of the Vibrational Response of the Human Head
,”
Comput. Mech.
0178-7675,
2
, pp.
382
388
.
2.
Miller
,
J. D.
, and
Pickard
,
J. D.
, 1974, “
Intracranial Volume-Pressure Studies in Patients With Head Injury
,”
Int. Arch. Occup. Environ. Health
0340-0131,
5
, pp.
265
269
.
3.
Shapiro
,
K.
,
Marmarou
,
A.
, and
Shulman
,
K.
, 1980, “
Characterization of Clinical CSF Dynamics and Neural Axis Compliance Using the Pressure-Volume Index. I. The Normal Pressure-Volume Index
,”
Ann. Neurol.
0364-5134,
7
, pp.
508
514
.
4.
Tas
,
J. J.
, and
Poortvliet
,
D. C. J.
, 1983, “
Intracranial Volume-Pressure Relationship in Man. Part 2. Clinical Significance of the Pressure-Volume Index
,”
J. Neurosurg.
0022-3085,
59
, pp.
810
816
.
5.
Charalambopoulos
,
A.
,
Fotiadies
,
D. I.
, and
Massalas
,
C. V.
, 1997, “
The Effect of Geometry on the Dynamic Characteristics of Human Skull
,”
Int. J. Eng. Sci.
0020-7225,
36
(
9
), pp.
1047
1060
.
6.
Fallenstein
,
E. T.
, and
Hulce
,
D. V.
, 1996, “
Dynamic Mechanical Properties of Human Brain Tissue
,”
J. Biomech.
0021-9290,
2
, pp.
217
226
.
7.
Charalambopoulos
,
A.
,
Fotiadis
,
D. I.
, and
Massalas
,
C. V.
, 1998, “
The Effect of Geometry on the Dynamic Characteristics of the Human Skull
,”
Int. J. Eng. Sci.
0020-7225,
36
(
9
), pp.
1047
1060
.
8.
Charalambopoulos
,
A.
,
Dassios
,
G.
,
Fotiadis
,
D. I.
,
Kostopoulos
,
V.
, and
Massalas
,
C. V.
, 1996, “
On the Dynamic Characteristics of the Human Skull
,”
Int. J. Eng. Sci.
0020-7225,
34
(
12
), pp.
1339
1348
.
9.
Willinger
,
R.
,
Kang
,
H. S.
, and
Diaw
,
B. M.
, 1999, “
Development and Validation of a Human Head Mechanical Model
,”
C. R. Acad. Sci., Ser. IIb Mec. Phys. Astron.
1287-4620,
327
(
1
), pp.
125
131
.
10.
Misra
,
J. C.
, and
Chakravarty
,
S.
, 1994, “
A Study on Rotational Brain Injury
,”
J. Biomech.
0021-9290,
17
, pp.
459
466
.
11.
Johnson
,
E. A. C.
, and
Young
,
P. G.
, “
On the Use of a Patient-Specific Rapid-Prototyped Model to Simulate the Response of the Human Head to Impact and Comparison With Analytical and Finite Element Models
,” unpublished.
12.
Meyer
,
F.
,
Willinger
,
R.
, and
Legal
,
F.
, 2004, “
The Importance of Modal Validation for Biomechanical Models: Application to the Cervical Spine
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1835
1855
.
13.
Willinger
,
R.
,
Bourdet
,
N.
,
Fischer
,
R.
, and
Le Gall
,
F.
, 2003, “
New Method for Biofidelity Evaluation of Dummy Necks
,”
ESV Conference
,
Nagoya, Japan
.
14.
Aare
,
M.
, and
Kleiven
,
S.
, 2007, “
Evaluation of Head Response to Ballistic Helmet Impacts Using FEM
,”
Int. J. Impact Eng.
0734-743X,
34
, pp.
596
608
.
15.
Halldin
,
P. H.
,
Gilchrist
,
A.
, and
Mills
,
N. J.
, 2001, “
Rotational Protection in Motorcycle Helmets
,”
Int. J. Crashworthiness
1358-8265,
6
(
1
).
16.
Willinger
,
R.
, and
Baumgartner
,
D.
, 2003, “
Human Head Tolerance Limits to Specific Injury Mechanisms
,”
Int. J. Crashworthiness
1358-8265,
8
(
6
), pp.
605
617
.
17.
Willinger
,
R.
, and
Baumgartner
,
D.
, 2003, “
Numerical and Physical Modelling of the Human Head Under Impact—Towards New Injury Criteria
,”
Int. J. Veh. Des.
0143-3369,
31
(
1/2
), pp.
94
115
.
18.
Halldin
,
P.
,
Aare
,
M.
,
Kleiven
,
S.
, and
von Holst
,
H.
, 2003, “
Reduced Risk for DAI by Use of a New Safety Helmet
,”
Proceedings of RTO Specialist Meeting on Personal Protection
,
Koblenz, Germany
, 19–23 May.
19.
Willinger
,
R.
,
Taleb
,
L.
, and
Kopp
,
C. M.
, “
Modal and Temporal Analysis of Head Mathematical Models
,”
J. Neurotrauma
0897-7151,
12
(
4
), pp.
743
754
.
20.
Stevanovics
,
M.
,
Wodicka
,
G. R.
,
Boukland
,
J. D.
, et al.
1995, “
The Effect of Intracranial Pressure on the Vibrational Response of the Ovine Head
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
720
727
.
21.
Douzinas
,
E. E.
,
Kostopoulos
,
V.
,
Kypriades
,
E.
,
Pappas
,
Y. Z
,
Lymberis
,
A.
,
Karmpaliotis
,
D. I.
,
Katsouyanni
,
K.
,
Andrianakis
,
I.
,
Papalois
,
A.
, and
Roussos
,
C.
, 1999, “
Brain Eigenfrequency Shifting (bes) as a Sensitive Index of Cerebral Compliance in an Experimental Model of Epidural Hematoma in the Rabbit—Preliminary Study
,”
Crit. Care Med.
0090-3493,
27
, pp.
978
984
.
22.
Khalil
,
T. B.
,
Viano
,
D. C.
, and
Smith
,
D. I
, 1979, “
Experimental Analysis of the Vibrational Characteristics of the Human Skull
,”
J. Sound Vib.
0022-460X,
63
, pp.
351
376
.
23.
Hakansson
,
B.
,
Brandt
,
A.
, and
Carlsson
,
P.
, et al.
, 1994, “
Resonance Frequencies of the Human Skull In Vivo
,”
J. Acoust. Soc. Am.
0001-4966,
95
, pp.
1474
1481
.
24.
Kostopoulos
,
V.
,
Douzinas
,
E. E.
,
Kypriades
,
E. M.
, and
Pappas
,
Y. Z.
, “
A New Method for the Early Diagnosis of Brain Oedema/Brain Swelling: An Experimental Study in Rabbits
,”
J. Biomech.
0021-9290, in press;
2006,
J. Biomech.
0021-9290,
39
, pp.
2958
2965
.
25.
Magosso
,
E.
,
Provini
,
F.
,
Montagna
,
P.
, and
Ursino
,
M.
, 2006, “
A Wavelet Based Method for Automatic Detection of Slow Eye Movements: A Pilot Study
,”
Med. Eng. Phys.
1350-4533,
28
(
9
), pp.
860
875
.
26.
Burri
,
H.
,
Chevalier
,
P.
,
Arzi
,
M.
,
Rubel
,
P.
,
Kirkorian
,
G.
, and
Touboul
,
P.
, 2006, “
Wavelet Transform for Analysis of Heart Rate Variability Preceding Ventricular Arrhythmias in Patients With Ischemic Heart Disease
,”
Int. J. Cardiol.
0167-5273,
109
(
1
), pp.
101
107
.
27.
Mørup
,
M.
,
Hansen
,
L. K.
,
Herrmann
,
C. S.
,
Parnas
,
J.
, and
Arnfred
,
S. M.
, 2006, “
Parallel Factor Analysis as an Exploratory Tool for Wavelet Transformed Event-Related EEG
,”
Neuroimage
1053-8119,
29
(
3
), pp.
938
947
.
28.
Watson
,
J. N.
,
Uchaipichat
,
N.
,
Addison
,
P. S.
,
Clegg
,
G. R.
,
Robertson
,
C. E.
,
Eftestol
,
T.
, and
Steen
,
P. A.
, 2004, “
Improved Prediction of Defibrillation Success for Out-of-Hospital VF Cardiac Arrest Using Wavelet Transform Methods
,”
Resuscitation
0300-9572,
63
(
3
), pp.
269
275
.
29.
Strambi
,
S.
,
Rossi
,
B.
,
De Michele
,
G.
, and
Sello
,
S.
, 2004, “
Effect of Medication in Parkinson’s Disease: A Wavelet Analysis of EMG Signals
,”
Med. Eng. Phys.
1350-4533,
26
(
4
), pp.
279
290
.
30.
Tan
,
B.
,
Shimizu
,
H.
,
Hiromoto
,
K.
,
Furukawa
,
Y.
,
Ohyanagi
,
M.
, and
Iwasaki
,
T.
, 2003, “
Wavelet Transform Analysis of Heart Rate Variability to Assess the Autonomic Changes Associated With Spontaneous Coronary Spasm of Variant Angina
,”
J. Electrocardiol.
0022-0736,
36
(
2
), pp.
117
124
.
31.
Wittek
,
A.
, and
Omori
,
K.
, 2003, “
A Parametric Study of Effects of Brain-Skull Boundary Conditions and Brain Material Properties on Responses of Simplified Finite Element Brain Model Under Angular Acceleration Impulse in Sagittal Plane
,”
JSME Int. J., Ser. C
1340-8062,
46
(
4
), pp.
1388
1399
.
32.
Young
,
P. G.
, 2003, “
An Analytical Model to Predict the Response of Fluid-Filled Shells to Impact—A Model for Blunt Head Impacts
,”
J. Sound Vib.
0022-460X,
267
(
5
), pp.
1107
1126
.
33.
Hallquist
,
J. O.
, 2005, LS-DYNA 970 Theory Manual, LSTC, Livermore.
34.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
SIAM
.
35.
Mallat
,
S.
, 1998,
A Wavelet Tour of Signal Processing
,
Academic
,
New York
.
36.
Newland
,
D. E.
, 1993,
Random Vibrations, Spectral and Wavelet Analysis
,
Longman
,
Essex, England
.
You do not currently have access to this content.