Accurate knowledge of biomechanical characteristics of tissues is essential for developing realistic computer-based surgical simulators incorporating haptic feedback, as well as for the design of surgical robots and tools. As simulation technologies continue to be capable of modeling more complex behavior, an in vivo tissue property database is needed. Most past and current biomechanical research is focused on soft and hard anatomical structures that are subject to physiological loading, testing the organs in situ. Internal organs are different in that respect since they are not subject to extensive loads as part of their regular physiological function. However, during surgery, a different set of loading conditions are imposed on these organs as a result of the interaction with the surgical tools. Following previous research studying the kinematics and dynamics of tool/tissue interaction in real surgical procedures, the focus of the current study was to obtain the structural biomechanical properties (engineering stress-strain and stress relaxation) of seven abdominal organs, including bladder, gallbladder, large and small intestines, liver, spleen, and stomach, using a porcine animal model. The organs were tested in vivo, in situ, and ex corpus (the latter two conditions being postmortem) under cyclical and step strain compressions using a motorized endoscopic grasper and a universal-testing machine. The tissues were tested with the same loading conditions commonly applied by surgeons during minimally invasive surgical procedures. Phenomenological models were developed for the various organs, testing conditions, and experimental devices. A property database—unique to the literature—has been created that contains the average elastic and relaxation model parameters measured for these tissues in vivo and postmortem. The results quantitatively indicate the significant differences between tissue properties measured in vivo and postmortem. A quantitative understanding of how the unconditioned tissue properties and model parameters are influenced by time postmortem and loading condition has been obtained. The results provide the material property foundations for developing science-based haptic surgical simulators, as well as surgical tools for manual and robotic systems.

1.
Madhani
,
A. J.
,
Niemeyer
,
G.
, and
Salisbury
,
J. K.
, Jr.
, 1998, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
New York
, Vol.
2
, pp.
936
944
.
2.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
3.
Fung
,
Y. C.
, 1967, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
0002-9513,
213
(
6
), pp.
1532
1544
.
4.
Yamada
,
H.
, 1973,
Strength of Biological Materials
,
Krieger
,
New York
.
5.
Tay
,
B. K.
,
Kim
,
J.
, and
Srinivasan
,
M. A.
, 2006, “
In Vivo Mechanical Behavior of Intra-Abdominal Organs
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
11
), pp.
2129
2138
.
6.
Kerdok
,
A. E.
,
Ottensmeyer
,
M. P.
, and
Howe
,
R. D.
, 2006, “
Effects of Perfusion on the Viscoelastic Characteristics of Liver
,”
J. Biomech.
0021-9290,
39
(
12
), pp.
2221
2231
.
7.
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Maltese
,
M. R.
, 2001, “
Biomechanics of Abdominal Injuries
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
2
), pp.
173
246
.
8.
Rouhana
,
S. W.
, 1993, “
Biomechanics of Abdominal Trauma
,” in
Accidental Injury: Biomechanics and Prevention
,
A. M.
Nahum
and
J. W.
Melvin
, eds.,
Springer-Verlag
New York
, pp.
391
428
.
9.
Liu
,
Z.
, and
Bilston
,
L.
, 2000, “
On the Viscoelastic Character of Liver Tissue: Experiments and Modelling of the Linear Behaviour
,”
Biorheology
0006-355X,
37
(
3
), pp.
191
201
.
10.
Arbogast
,
K. B.
,
Thibault
,
K. L.
,
Pinheiro
,
B. S.
,
Winey
,
K. I.
, and
Margulies
,
S. S.
, 1997, “
A High-Frequency Shear Device for Testing Soft Biological Tissues
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
757
759
.
11.
Dokos
,
S.
,
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Kar
,
J.
, and
Young
,
A. A.
, 2000, “
A Triaxial-Measurement Shear-Test Device for Soft Biological Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
471
478
.
12.
Gao
,
C. W.
, and
Gregersen
,
H.
, 2000, “
Biomechanical and Morphological Properties in Rat Large Intestine
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1089
1097
.
13.
Gregersen
,
H.
,
Emery
,
J. L.
, and
McCulloch
,
A. D.
, 1998, “
History-Dependent Mechanical Behavior of Guinea-Pig Small Intestine
,”
Ann. Biomed. Eng.
0090-6964,
26
(
5
), pp.
850
858
.
14.
Carter
,
F. J.
,
Frank
,
T. G.
,
Davies
,
P. J.
, and
Cuschieri
,
A.
, 2000, “
Puncture Forces of Solid Organ Surfaces
,”
Surg. Endosc
0930-2794,
14
(
9
), pp.
783
786
.
15.
Carter
,
F. J.
,
Frank
,
T. G.
,
Davies
,
P. J.
,
McLean
,
D.
, and
Cuschieri
,
A.
, 2001, “
Measurements and Modelling of the Compliance of Human and Porcine Organs
,”
Med. Image Anal.
1361-8415,
5
(
4
), pp.
231
236
.
16.
Davies
,
P. J.
,
Carter
,
F. J.
, and
Cuschieri
,
A.
, 2002, “
Mathematical Modelling for Keyhole Surgery Simulations: A Biomechanical Model for Spleen Tissue
,”
IMA J. Appl. Math.
0272-4960,
67
, pp.
41
67
.
17.
Tamura
,
A.
,
Omori
,
K.
,
Miki
,
K.
,
Lee
,
J. B.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2002, “
Mechanical Characterization of Porcine Abdominal Organs
,”
46th Stapp Car Crash Conference
, Vol.
46
, pp.
55
69
.
18.
Melvin
,
J. W.
,
Stalnaker
,
R. L.
,
Roberts
,
V. L.
, and
Trollope
,
M. L.
, 1973, “
Impact Injury Mechanisms in Abdominal Organs
,”
Proceedings of the 17th Stapp Car Crash Conference
, pp.
115
126
.
19.
Zheng
,
Y. P.
,
Mak
,
A. F. T.
, and
Lue
,
B.
, 1999, “
Objective Assessment of Limb Tissue Elasticity: Development of a Manual Indentation Procedure
,”
J. Rehabil. Res. Dev.
0748-7711,
36
(
2
), pp.
71
85
.
20.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
, 1999, “
Extraction of Quasi-Linear Viscoelastic Parameters for Lower Limb Soft Tissues from Manual Indentation Experiment
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
330
339
.
21.
Pathak
,
A. P.
,
Silver
,
T. M. B.
,
Thierfelder
,
C. A.
, and
Prieto
,
T. E.
, 1998, “
A Rate-Controlled Indentor for In Vivo Analysis of Residual Limb Tissues
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
6
(
1
), pp.
12
20
.
22.
Brouwer
,
I.
,
Ustin
,
J.
,
Bentley
,
L.
,
Sherman
,
A.
,
Dhruv
,
N.
, and
Tendick
,
F.
, 2001, “
Measuring In Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical Simulation
,” Medicine Meets Virtual Reality, Newport Beach, CA, Jan. 24–27,
Stud. Health Technol. Inform.
0926-9630,
81
, pp.
69
74
.
23.
Ottensmeyer
,
M. P.
, and
Salisbury
,
J.
, 2000, “
In-Vivo Mechanical Tissue Property Measurement for Improved Simulations
,”
Proc. SPIE
0277-786X,
4037
, pp.
286
293
.
24.
Kalanovic
,
D.
,
Ottensmeyer
,
M. P.
,
Gross
,
J.
,
Buess
,
G.
, and
Dawson
,
S. L.
, 2003, “
Independent Testing of Soft Tissue Viscoelasticity Using Indentation and Rotary Shear Deformations
,”
Medicine Meets Virtual Reality
, Newport Beach, CA, Jan. 22–25;
Stud. Health Technol. Inform.
0926-9630,
94
, pp.
137
143
.
25.
Bicchi
,
A.
,
Canepa
,
G.
,
De
,
R. D.
,
Iacconi
,
P.
, and
Scillingo
,
E. P.
, 1996, “
A Sensor-Based Minimally Invasive Surgery Tool for Detecting Tissue Elastic Properties
,”
Proceedings 1996 IEEE International Conference on Robotics and Automation
,
New York
, Vol.
1
, pp.
884
888
.
26.
Morimoto
,
A. K.
,
Foral
,
R. D.
,
Kuhlman
,
J. L.
,
Zucker
,
K. A.
,
Curet
,
M. J.
,
Bocklage
,
T.
,
MacFarlane
,
T. I.
, and
Kory
,
L.
, 1997, “
Force Sensor for Laparoscopic Babcock
,” Medicine Meets Virtual Reality,
Stud. Health Technol. Inform.
0926-9630,
39
, pp.
354
361
.
27.
Greenish
,
S.
,
Hayward
,
V.
,
Chial
,
V.
,
Okamura
,
A.
, and
Steffen
,
T.
, 2002, “Measurement, Analysis, and Display of Haptic Signals During Surgical Cutting,” Presence: Teleoperators and Virtual Environments, 11(6), pp. 626–651.
28.
Brown
,
J. D.
,
Rosen
,
J.
,
Longnion
,
J.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2001, “
Design and Performance of a Surgical Tool Tracking System for Minimally Invasive Surgery
,”
ASME International Mechanical Engineering Congress and Exposition
,
New York
, Nov. 11–16;
Adv. Bioeng.
0360-9960,
51
, pp.
169
170
.
29.
Rosen
,
J.
,
Brown
,
J. D.
,
Barreca
,
M.
,
Chang
,
L.
,
Hannaford
,
B.
, and
Sinanan
,
M.
, 2002, “
The Blue DRAGON—A System for Monitoring the Kinematics and the Dynamics of Endoscopic Tools in Minimally Invasive Surgery for Objective Laparoscopic Skill Assessment
,”
Medicine Meets Virtual Reality
,
Newport Beach, CA
, Jan. 23–26;
Stud. Health Technol. Inform.
0926-9630,
85
, pp.
412
418
.
30.
Rosen
,
J.
,
Brown
,
J. D.
,
Barreca
,
M.
,
Chang
,
L.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2002, “
The Blue DRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Instruments In-Vivo
,”
2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
, Vol.
2
, pp.
1876
1881
.
31.
Rosen
,
J.
,
Hannaford
,
B.
,
MacFarlane
,
M. P.
, and
Sinanan
,
M. N.
, 1999, “
Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
(
10
), pp.
1212
1221
.
32.
Brown
,
J. D.
,
Rosen
,
J.
,
Moreyra
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2002, “
Computer-Controlled Motorized Endoscopic Grasper for In Vivo Measurement of Soft Tissue Biomechanical Characteristics
,”
Medicine Meets Virtual Reality
,
Newport Beach, CA
, Jan. 23–26;
Stud. Health Technol. Inform.
0926-9630,
85
, pp.
71
73
.
33.
Brown
,
J. D.
,
Rosen
,
J.
,
Kim
,
Y. S.
,
Chang
,
L.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2003, “
In-Vivo and In-Situ Compressive Properties of Porcine Abdominal Soft Tissues
,”
Medicine Meets Virtual Reality
,
Newport Beach, CA
, Jan. 22–25;
Stud. Health Technol. Inform.
0926-9630,
94
, pp.
26
32
.
34.
Brown
,
J. D.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2003, “
In-Vivo and Postmortem Compressive Properties of Porcine Abdominal Organs
,”
MICCAI 2003
, Montreal, Canada;
Lect. Notes Comput. Sci.
0302-9743,
2878
, pp.
238
245
.
35.
Mkandawire
,
C.
,
Ledoux
,
W.
,
Sangeorzan
,
B.
, and
Ching
,
R.
, 2001, “
A Quasi-Linear Viscoelastic Model of Foot-Ankle Ligaments
,”
25th Annual Meeting of the American Society of Biomechanics
,
University of California-San Diego
,
San Diego, CA
, Aug. 8–11,
409
410
.
36.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1980, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
2
), pp.
85
90
.
37.
Mow
,
V. C.
,
Kuei
,
S. C.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
38.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments
,”
J. Biomech.
0021-9290,
30
(
11/12
), pp.
1157
1164
.
39.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
0021-9290,
34
(
4
), pp.
519
525
.
40.
DiSilvestro
,
M. R.
,
Qiliang
,
Z.
,
Marcy
,
W.
,
Jurvelin
,
J. S.
, and
Jun
,
K. F. S.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I-Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
191
197
.
41.
DiSilvestro
,
M. R.
,
Qiliang
,
Z.
, and
Jun
,
K. F. S.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II-Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
198
200
.
42.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
, 2000, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
189
195
.
43.
Suh
,
J. K.
, and
Spilker
,
R. L.
, 1994, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
1
9
.
44.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
45.
Brown
,
J. D.
,
Rosen
,
J.
,
Chang
,
L.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2004, “
Quantifying Surgeon Grasping Mechanics in Laparoscopy Using the Blue DRAGON System
,”
Medicine Meets Virtual Reality
;
Stud. Health Technol. Inform.
0926-9630,
98
, pp.
34
36
.
46.
Farshad
,
M.
,
Barbezat
,
M.
,
Flueler
,
P.
,
Schmidlin
,
F.
,
Graber
,
P.
, and
Niederer
,
P.
, 1999, “
Material Characterization of the Pig Kidney in Relation With the Biomechanical Analysis of Renal Trauma
,”
J. Biomech.
0021-9290,
32
(
4
), pp.
417
425
.
47.
Wang
,
J.
,
Brienza
,
D. M.
,
Bertocci
,
G.
, and
Karg
,
P.
, 2001, “
Stress Relaxation Properties of Buttock Soft Tissues: In Vivo Indentation Test
,”
Proceedings of the RESNA 2001 Annual Conference
, NV, Reno, Jun. 22–26, pp.
391
393
.
48.
Simon
,
B. R.
,
Coats
,
R. S.
, and
Woo
,
S. L.
, 1984, “
Relaxation and Creep Quasilinear Viscoelastic Models for Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
2
), pp.
159
164
.
You do not currently have access to this content.