To understand brain injuries better, the mechanical properties of brain tissue have been studied for 50years; however, no universally accepted data set exists. The variation in material properties reported may be caused by differences in testing methods and protocols used. An overview of studies on the mechanical properties of brain tissue is given, focusing on testing methods. Moreover, the influence of important test conditions, such as temperature, anisotropy, and precompression was experimentally determined for shear deformation. The results measured at room temperature show a stiffer response than those measured at body temperature. By applying the time-temperature superposition, a horizontal shift factor aT=8.511 was found, which is in agreement with the values found in literature. Anisotropy of samples from the corona radiata was investigated by measuring the shear resistance for different directions in the sagittal, the coronal, and the transverse plane. The results measured in the coronal and the transverse plane were 1.3 and 1.25 times stiffer than the results obtained from the sagittal plane. The variation caused by anisotropy within the same plane of individual samples was found to range from 25% to 54%. The effect of precompression on shear results was investigated and was found to stiffen the sample response. Combinations of these and other factors (postmortem time, donor age, donor type, etc.) lead to large differences among different studies, depending on the different test conditions.

1.
ETSC
, 1993, “
Report in Motorcycle Safety, European Experimental Vehicles Committee Ad-Hoc Group
,” European Transport Safety Council, Technical Report.
2.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
, and
Wismans
,
J. S. H. M.
, 2002, “
On the Potential Importance of Non-Linear Viscoelastic Material Modeling for Numerical Prediction of the Tissue Response: Test and Application
,”
Stapp Car Crash Journal
,
46
, pp.
103
121
.
3.
Ommaya
,
A. K.
, 1968, “
Mechanical Properties of Tissue of the Nervous System
,”
J. Biomech.
0021-9290,
1
(
2
), pp.
127
138
.
4.
Goldsmith
,
W.
, 1972, “
Biomechanics of Head Injury
,”
Biomechanics: Its Foundation and Objectives
,
Y. C.
Fund
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
585
634
.
5.
Thibault
,
L. E.
, and
Gennarelli
,
T. A.
, 1985, “
Biomechanics and Craniocerebral Trauma
,” Central Nervous System Trauma Status Report,
National Institutes of Health
, pp.
379
389
.
6.
Donnelly
,
B. R.
, 1998, “
Brain Tissue Material Properties: A Comparison of Results
,”
Biomechanical Research: Experimental and Computational, Proceedings of the 26th International Workshop
, pp.
47
57
.
7.
Kruse
,
S. A.
,
Dresner
,
M. A.
,
Rossman
,
P. J.
,
Felmlee
,
J. P.
,
Jack
,
C. R.
, and
Ehman
,
R. L.
, 1999, “
Palpation of the Brain Using Magnetic Resonance Elastography
,”
Proceedings of the Seventh Annual Meeting of ISMRM
, p.
258
.
8.
Manduca
,
A.
,
Oliphant
,
T. E.
,
Dresner
,
M. A.
,
Mahowald
,
J. L.
,
Kruse
,
S. A.
,
Amromin
,
E.
,
Felmlee
,
J. P.
,
Greenleaf
,
j. F.
, and
Ehman
,
R. L.
, 2001, “
Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
,”
Med. Image Anal.
1361-8415,
5
(
4
), pp.
237
254
.
9.
Manduca
,
A.
,
Lake
,
D. S.
,
Kruse
,
S. A.
, and
Ehman
,
R. L.
, 2003, “
Spatio-Temporal Directional Filtering for Improved Inversion of MR Elastography Images
,”
Med. Image Anal.
1361-8415,
7
(
4
), pp.
465
473
.
10.
McCracken
,
P. J.
,
Manduca
,
A.
,
Felmlee
,
J.
, and
Ehman
,
R. L.
, 2005, “
Mechanical Transient-Based Magnetic Resonance Elastography
,”
Magn. Reson. Med.
0740-3194,
53
(
1
), pp.
628
639
.
11.
Hamhaber
,
U.
,
Sack
,
I.
,
Papazoglou
,
S.
,
Rump
,
J.
,
Klatt
,
D.
, and
Braun
,
J.
, 2007, “
Three-Dimensional Analysis of Shear Wave Propagation Observed by In Vivo Magnetic Resonance Elastography of the Brain
,”
Acta Biomater.
,
3
(
1
), pp.
127
137
.
12.
Etoh
,
A.
,
Mitaku
,
S.
,
Yamamoto
,
J.
, and
Okano
,
K.
, 1994, “
Ultrasonic Absorption Anomaly of Brain Tissue
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
33
, pp.
2874
2879
.
13.
Lin
,
S.
,
Shieh
,
S.
, and
Grimm
,
M. J.
, 1997, “
Ultrasonic Measurements of Brain Tissue Properties
,”
Proceedings of Center for Disease Control
, Wayne State University, pp.
27
31
.
14.
Lin
,
S.
, and
Grimm
,
M. J.
, 1998, “
Characterization of the Mechanical Properties of Brain Tissue Using Ultrasound
,”
Proceedings of Center for Disease Control
, Wayne State University, pp.
59
64
.
15.
Lippert
,
S. A.
,
Rang
,
E. M.
, and
Grimm
,
M. J.
, 2003, “
The Wave-in-a-Tube Method for Estimation of Mechanical Properties of Viscoelastic Materials Using Ultrasound
,”
J. Test. Eval.
0090-3973,
31
(
1
), pp.
73
78
.
16.
Lippert
,
S. A.
,
Rang
,
E. M.
, and
Grimm
,
M. J.
, 2004, “
The High Frequency Properties of Brain Tissue
,”
Biorheology
0006-355X,
41
(
6
), pp.
681
691
.
17.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
244
252
.
18.
Takhounts
,
E. G.
,
Crandall
,
J. R.
, and
Darvish
,
K. K.
, 2003, “
On the Importance of Nonlinearity of Brain Tissue Under Large Deformations
,”
Stapp Car Crash Journal
,
47
, pp.
107
134
.
19.
Nicolle
,
S.
,
Lounis
,
M.
, and
Willinger
,
R.
, 2004, “
Shear Properties of Brain Tissue Over a Frequency Range Relevant for Automotive Impact Situations: New Experimental Results
,”
Stapp Car Crash Journal
,
48
, pp.
239
258
.
20.
Nicolle
,
S.
,
Lounis
,
M.
,
Willinger
,
R.
, and
Palierne
,
J. F.
, 2005, “
Shear Linear Behavior of Brain Tissue Over a Large Frequency Range
,”
Biorheology
0006-355X,
42
(
3
), pp.
209
223
.
21.
Arbogast
,
K. B.
,
Meaney
,
D. F.
, and
Thibault
,
L. E.
, 1995, “
Biomechanical Characterization of the Constitutive Relationship for the Brainstem
,”
Proceedings of the 39th Stapp Car Crash Conference
, Paper No. SAE 952716, pp.
153
159
.
22.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
, 1998, “
Material Characterization of the Brainstem From Oscillatory Shear Tests
,”
J. Biomech.
0021-9290,
31
(
9
), pp.
801
807
.
23.
Prange
,
M. T.
,
Meaney
,
D. F.
, and
Margulies
,
S. S.
, 2000, “
Defining Brain Mechanical Properties: Effects of Region, Direction, and Species
,”
Proceedings of the 44th Stapp Car Crash Conference
, Paper No. 2000-01-SC15, pp.
205
213
.
24.
Darvish
,
K. K.
, and
Crandall
,
J. R.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
1350-4533,
23
(
9
), pp.
633
645
.
25.
Donnelly
,
B. R.
, and
Medige
,
J.
, 1997, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
423
432
.
26.
Takhounts
,
E. G.
,
Crandall
,
J. R.
, and
Matthews
,
B. T.
, 1999, “
Shear Properties of Brain Tissue Using Non-Linear Green-Rivlin Viscoelastic Constitutive Equation
,”
Injury Biomechanics Research, Proceedings of the 27th International Workshop
, pp.
141
156
.
27.
Arbogast
,
K. B.
, and
Margulies
,
S. S.
, 1997, “
Regional Differences in Mechanical Properties of the Porcine Central Nervous System
,”
Proceedings of the 41st Stapp Car Crash Conference
, Paper No. SAE 973336, pp.
293
300
.
28.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
, 1997, “
Linear Viscoelastic Properties of Bovine Brain Tissue in Shear
,”
Biorheology
0006-355X,
34
(
6
), pp.
377
385
.
29.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
, 2001, “
Large Strain Behavior of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
0006-355X,
38
(
3
), pp.
335
345
.
30.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
,
Peters
,
G. W. M.
,
Wismans
,
J. S. H. M.
,
Paas
,
M. H. J. W.
, and
van Bree
,
J. L. M. J.
, 1999, “
Comparison of the Dynamic Behavior of the Brain Tissue and Two Model Materials
,”
Proceedings of the 43rd Stapp Car Crash Conference
, Paper No. SAE 99SC21, pp.
57
64
.
31.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H. M.
, 2000, “
The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and the Silicone Gel Model Material
,”
Proceedings of the 44th Stapp Car Crash Conference
, Paper No. SAE 2000-01-SC17, pp.
249
260
.
32.
Brands
,
D. W. A.
,
Peters
,
G. W. M.
, and
Bovendeerd
,
P. H. M.
, 2004, “
Design and Numerical Implementation of a 3-D Non-Linear Viscoelastic Constitutive Model for Brain Tissue During Impact
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
127
134
.
33.
Hrapko
,
M.
,
van Dommelen
,
J. A. W.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H. M.
, 2006, “
The Mechanical Behavior of Brain Tissue: Large Strain Response and Constitutive Modelling
,”
Biorheology
0006-355X,
43
(
5
), pp.
623
636
.
34.
Garo
,
A.
,
Hrapko
,
M.
,
van Dommelen
,
J. A. W.
, and
Peters
,
G. W. M.
, 2007, “
Towards a Reliable Characterization of the Mechanical Behaviour of Brain Tissue: The Effects of Post-Mortem Time and Sample Preparation
,”
Biorheology
0006-355X,
44
(
1
), pp.
51
58
.
35.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 1999, “
Anisotropy and Inhomogeneity of the Mechanical Properties of Brain Tissue at Large Deformation
,”
Proceedings of Center for Disease Control
, Wayne State University, pp.
95
100
.
36.
Prange
,
M. T.
,
Meaney
,
D. F.
, and
Margulies
,
S. S.
, 1998, “
Directional Properties of Gray and White Brain Tissue
,”
Proceedings of Center for Disease Control
, Wayne State University, pp.
65
71
.
37.
Thibault
,
K. L.
, and
Margulies
,
S. S.
, 1996, “
Material Properties of the Developing Porcine Brain
,”
Proceedings of the IRCOBI Conference
, pp.
75
85
.
38.
Thibault
,
K. L.
, and
Margulies
,
S. S.
, 1998, “
Age-Dependent Material Properties of the Porcine Cerebrum: Effect on Pediatric Inertial Head Injury Criteria
,”
J. Biomech.
0021-9290,
31
(
12
), pp.
1119
1126
.
39.
Shen
,
F.
,
Tay
,
T. E.
,
Li
,
J. Z.
,
Nigen
,
S.
,
Lee
,
P. V. S.
, and
Chan
,
H. K.
, 2006, “
Modified Bilston Nonlinear Viscoelastic Model for Finite Element Head Injury Studies
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
797
801
.
40.
Shuck
,
L. Z.
, and
Advani
,
S. H.
, 1972, “
Rheological Response of Human Brain Tissue in Shear
,”
ASME J. Basic Eng.
0021-9223,
94
, pp.
905
911
.
41.
Peters
,
G. W. M.
,
Meulman
,
J. H.
, and
Sauren
,
A. H. J.
, 1997, “
The Applicability of the Time/Temperature Superposition Principle to Brain Tissue
,”
Biorheology
0006-355X,
34
(
2
), pp.
127
138
.
42.
Metz
,
H.
,
McElhaney
,
J.
, and
Ommaya
,
A. K.
, 1970, “
A Comparison of the Elasticity of Live, Dead, and Fixed Brain Tissue
,”
J. Biomech.
0021-9290,
3
(
4
), pp.
453
458
.
43.
McElhaney
,
J. H.
,
Melvin
,
J. W.
,
Roberts
,
V. L.
, and
Portnoy
,
H. D.
, 1973, “
Dynamic Characteristics of the Tissues of the Head
,”
Perspectives in Biomedical Engineering
,
R. M.
Kenedi
, ed.,
MacMillan
,
London
, pp.
215
222
.
44.
van Turnhout
,
M.
,
Oomens
,
C.
,
Peters
,
G.
, and
Stekelenburg
,
A.
, 2005, “
Passive Transverse Mechanical Properties as a Function of Temperature of Rat Skeletal Muscle in Vitro
,”
Biorheology
0006-355X,
42
(
3
), pp.
193
207
.
45.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
, 3rd ed.,
Wiley
,
New York
.
46.
Arbogast
,
K. B.
,
Thibault
,
K. L.
,
Pinheiro
,
B. S.
,
Winey
,
K. I.
, and
Margulies
,
S. S.
, 1997, “
A High-Frequency Shear Device for Testing Soft Biological Tissues
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
775
759
.
47.
Dobbing
,
J.
, 1974, “
The Later Development of the Brain and its Vulnerability
,”
Scientific Foundation of Pediatrics
,
J. A.
Davis
and
J.
Dobbing
, eds.,
Heinemann Medical
,
London
.
48.
Fallenstein
,
G. T.
,
Hulce
,
V. D.
, and
Melvin
,
J. W.
, 1969, “
Dynamic Mechanical Properties of Human Brain Tissue
,”
J. Biomech.
0021-9290,
2
(
3
), pp.
217
226
.
49.
Wang
,
H. C.
, and
Wineman
,
A. S.
, 1972, “
A Mathematical Model for the Determination of Viscoelastic Behavior of Brain In Vivo
,”
J. Biomech.
0021-9290,
5
(
5
), pp.
431
446
.
50.
Arbogast
,
K. B.
,
Prange
,
M. T.
,
Meaney
,
D. F.
, and
Margulies
,
S. S.
, 1997, “
Properties of Cerebral Gray and White Matter Undergoing Large Deformation
,”
Proceedings of Center for Disease Control
,
Wayne State University
, pp.
33
39
.
51.
Cheng
,
S.
, and
Bilston
,
L. E.
, 2007, “
Unconfined compression of white matter
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
117
124
.
52.
Dodgson
,
M. C. H.
, 1962, “
Colloidal Structures of Brain
,”
Biorheology
0006-355X,
1
(
1
), pp.
21
30
.
53.
Estes
,
M. S.
, and
McElhaney
,
J. H.
, 1970, “
Response of Brain Tissue of Compressive Loading
,”
Proceedings of the Fourth ASME Biomechanics Conference
, Paper No. 70-BHF-13.
54.
Franceschini
,
G.
,
Bigoni
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
, 2006, “
Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory
,”
J. Mech. Phys. Solids
0022-5096,
54
(
12
), pp.
2592
2620
.
55.
Galford
,
J. E.
, and
McElhaney
,
J. H.
, 1970, “
A Viscoelastic Study of Scalp, Brain, and Dura
,”
J. Biomech.
0021-9290,
3
(
2
), pp.
211
221
.
56.
Gefen
,
A.
,
Gefen
,
N.
,
Zhu
,
Q.
,
Raghupathi
,
R.
, and
Margulies
,
S. S.
, 2003, “
Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat
,”
J. Neurotrauma
0897-7151,
20
(
11
), pp.
1163
1177
.
57.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
0021-9290,
37
(
9
), pp.
1339
1352
.
58.
Koeneman
,
J. B.
, 1966, “
Viscoelastic Properties of Brain Tissue
,” M.S. thesis, Case Institute of Technology.
59.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
(
11–12
), pp.
1115
1121
.
60.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
, 2000, “
Mechanical Properties of Brain Tissue In-Vivo: Experiment and Computer Simulation
,”
J. Biomech.
0021-9290,
33
(
11
), pp.
1369
1376
.
61.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
483
490
.
62.
Ning
,
X.
,
Zhu
,
Q.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
, 2006, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
925
933
.
63.
Velardi
,
F.
,
Fraternali
,
F.
, and
Angelillo
,
M.
, 2006, “
Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
,”
Biomech. Model. Mechanobiol.
,
5
(
1
), pp.
53
61
.
You do not currently have access to this content.