Prior joint injury predisposes an individual to developing post-traumatic osteoarthritis, for which there is presently no disease modifying treatment. In this condition, articular cartilage degenerates due to cell death and matrix breakdown, resulting in tissue with diminished biomechanical function. P188, a nonionic surfactant, and the growth factor IGF-I have been shown to decrease cell death. Additionally, IGF-I is known to have beneficial effects on cartilage matrix. The objective of this study was to determine the efficacy of P188, IGF-I, and their combination following articular cartilage impact injury with two energy levels, 1.1J (“low”) and 2.8J (“high”), at 24h and 1week. Bovine articular cartilage with attached underlying bone was impacted at the low or high level. Impact sites were explanted and examined immediately, or cultured for 24h or 1week in serum-free media supplemented with P188 (8mgml), IGF-I (100ngml), or their combination. Gross morphology, cell viability, GAG release to the media, and tissue mechanical properties were assessed. Immediately postimpact, high level impacted tissue had significantly increased gross morphology scores, indicating tissue damage, which were maintained over 1week. Gross scores following low impact were initially similar to nonimpacted controls, but, at 24h and 1week, low impact gross scores significantly increased compared to nonimpacted controls. Additionally, at 24h, high impact resulted in increased cell death, and both low and high impacts had increased GAG release compared to nonimpacted controls. Furthermore, high impact caused decreased tissue stiffness at 24h that appeared to worsen over 1week, evident by the percent decrease from nonimpacted controls increasing from 16% to 26%. No treatment type studied mitigated this loss. The combination did not perform better than either individual treatment; however, following low impact at 1week, P188 reduced cell death by 75% compared to no treatment and IGF-I decreased GAG release from the tissue by 49%. In conclusion, high impact resulted in immediate tissue changes that worsened over 1week. Though not causing immediate changes, low impact also resulted in tissue degeneration evident by 24h. No treatment studied was effective at 24h, but by 1week P188 and IGF-I ameliorated established detrimental changes occurring in articular cartilage postimpact. However, further work is needed to optimize treatment strategies to prevent and/or reverse cell death and matrix destruction in a way that maintains tissue mechanical properties, and hence its functionality.

1.
Buckwalter
,
J. A.
,
Saltzman
,
C.
, and
Brown
,
T.
, 2004, “
The Impact of Osteoarthritis: Implications for Research
,”
Clin. Orthop. Relat. Res.
0009-921X,
427
pp.
S6
S15
.
2.
Felson
,
D. T.
,
Lawrence
,
R. C.
,
Dieppe
,
P. A.
,
Hirsch
,
R.
,
Helmick
,
C. G.
,
Jordan
,
J. M.
,
Kington
,
R. S.
,
Lane
,
N. E.
,
Nevitt
,
M. C.
,
Zhang
,
Y.
,
Sowers
,
M.
,
McAlindon
,
T.
,
Spector
,
T. D.
,
Poole
,
A. R.
,
Yanovski
,
S. Z.
,
Ateshian
,
G.
,
Sharma
,
L.
,
Buckwalter
,
J. A.
,
Brandt
,
K. D.
, and
Fries
,
J. F.
, 2000, “
Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors
,”
Ann. Intern Med.
0003-4819,
133
(
8
), pp.
635
646
.
3.
Buckwalter
,
J. A.
, 2003, “
Sports, Joint Injury, and Posttraumatic Osteoarthritis
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
33
(
10
), pp.
578
588
.
4.
Aigner
,
T.
, and
Kim
,
H. A.
, 2002, “
Apoptosis and Cellular Vitality: Issues in Osteoarthritic Cartilage Degeneration
,”
Arthritis Rheum.
0004-3591,
46
(
8
), pp.
1986
1996
.
5.
Silver
,
F. H.
,
Bradica
,
G.
, and
Tria
,
A.
, 2001, “
Relationship Among Biomechanical, Biochemical, and Cellular Changes Associated With Osteoarthritis
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
4
), pp.
373
391
.
6.
Hasler
,
E. M.
,
Herzog
,
W.
,
Wu
,
J. Z.
,
Muller
,
W.
, and
Wyss
,
U.
, 1999, “
Articular Cartilage Biomechanics: Theoretical Models, Material Properties, and Biosynthetic Response
,”
Crit. Rev. Biomed. Eng.
0278-940X,
27
(
6
), pp.
415
488
.
7.
Borrelli
, Jr.,
J.
, and
Ricci
,
W. M.
, 2004, “
Acute Effects of Cartilage Impact
,”
Clin. Orthop. Relat. Res.
0009-921X,
423
, pp.
33
39
.
8.
Scott
,
C.
, and
Athanasiou
,
K. A.
, 2006, “
Mechanical Impact and Articular Cartilage
,”
Crit. Rev. Biomed. Eng.
0278-940X,
34
(
5
), pp.
347
378
.
9.
Vrahas
,
M. S.
,
Mithoefer
,
K.
, and
Joseph
,
D.
, 2004, “
The Long-Term Effects of Articular Impaction
,”
Clin. Orthop. Relat. Res.
0009-921X,
423
pp.
40
43
.
10.
Huser
,
C. A.
, and
Davies
,
M. E.
, 2006, “
Validation of an In Vitro Single-Impact Load Model of the Initiation of Osteoarthritis-Like Changes in Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
24
(
4
), pp.
725
732
.
11.
Jeffrey
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
, 1995, “
Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
322
(
1
), pp.
87
96
.
12.
Finlay
,
J. B.
, and
Repo
,
R. U.
, 1978, “
Impact Characteristics of Articular Cartilage
,”
ISA Trans.
0019-0578,
17
(
1
), pp.
29
34
.
13.
Milentijevic
,
D.
,
Rubel
,
I. F.
,
Liew
,
A. S.
,
Helfet
,
D. L.
, and
Torzilli
,
P. A.
, 2005, “
An In Vivo Rabbit Model for Cartilage Trauma: A Preliminary Study of the Influence of Impact Stress Magnitude on Chondrocyte Death and Matrix Damage
,”
J. Orthop. Trauma
0890-5339,
19
(
7
), pp.
466
473
.
14.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
,
J.
, Jr.
, and
Helfet
,
D. L.
, 1999, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
433
441
.
15.
Ewers
,
B. J.
,
Dvoracek-Driksna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
, 2001, “
The Extent of Matrix Damage and Chondrocyte Death in Mechanically Traumatized Articular Cartilage Explants Depends on Rate of Loading
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
779
784
.
16.
Kurz
,
B.
,
Jin
,
M.
,
Patwari
,
P.
,
Cheng
,
D. M.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
, 2001, “
Biosynthetic Response and Mechanical Properties of Articular Cartilage After Injurious Compression
,”
J. Orthop. Res.
0736-0266,
19
(
6
), pp.
1140
1146
.
17.
Milentijevic
,
D.
, and
Torzilli
,
P. A.
, 2005, “
Influence of Stress Rate on Water Loss, Matrix Deformation and Chondrocyte Viability in Impacted Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
493
502
.
18.
Morel
,
V.
, and
Quinn
,
T. M.
, 2004, “
Cartilage Injury by Ramp Compression Near the Gel Diffusion Rate
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
145
151
.
19.
Jeffrey
,
J. E.
,
Thomson
,
L. A.
, and
Aspden
,
R. M.
, 1997, “
Matrix Loss and Synthesis Following a Single Impact Load on Articular Cartilage In Vitro
,”
Biochim. Biophys. Acta
0006-3002,
1334
(
2–3
), pp.
223
232
.
20.
Krueger
,
J. A.
,
Thisse
,
P.
,
Ewers
,
B. J.
,
Dvoracek-Driksna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
, 2003, “
The Extent and Distribution of Cell Death and Matrix Damage in Impacted Chondral Explants Varies With the Presence of Underlying Bone
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
114
119
.
21.
Radin
,
E. L.
, and
Paul
,
I. L.
, 1971, “
Importance of Bone in Sparing Articular Cartilage From Impact
,”
Clin. Orthop. Relat. Res.
0009-921X,
78
, pp.
342
344
.
22.
Rundell
,
S. A.
, and
Haut
,
R. C.
, 2006, “
Exposure to a Standard Culture Medium Alters the Response of Cartilage Explants to Injurious Unconfined Compression
,”
J. Biomech.
0021-9290,
39
(
10
), pp.
1933
1938
.
23.
Ewers
,
B. J.
,
Newberry
,
W. N.
, and
Haut
,
R. C.
, 2000, “
Chronic Softening of Cartilage Without Thickening of Underlying Bone in a Joint Trauma Model
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1689
1694
.
24.
Ewers
,
B. J.
,
Weaver
,
B. T.
,
Sevensma
,
E. T.
, and
Haut
,
R. C.
, 2002, “
Chronic Changes in Rabbit Retro-Patellar Cartilage and Subchondral Bone After Blunt Impact Loading of the Patellofemoral Joint
,”
J. Orthop. Res.
0736-0266,
20
(
3
), pp.
545
550
.
25.
Greenebaum
,
B.
,
Blossfield
,
K.
,
Hannig
,
J.
,
Carrillo
,
C. S.
,
Beckett
,
M. A.
,
Weichselbaum
,
R. R.
, and
Lee
,
R. C.
, 2004, “
Poloxamer 188 Prevents Acute Necrosis of Adult Skeletal Muscle Cells Following High-Dose Irradiation
,”
Burns
0305-4179,
30
(
6
), pp.
539
547
.
26.
Marks
,
J. D.
,
Pan
,
C. Y.
,
Bushell
,
T.
,
Cromie
,
W.
, and
Lee
,
R. C.
, 2001, “
Amphiphilic, Tri-Block Copolymers Provide Potent Membrane-Targeted Neuroprotection
,”
FASEB J.
0892-6638,
15
(
6
), pp.
1107
1109
.
27.
Maskarinec
,
S. A.
,
Hannig
,
J.
,
Lee
,
R. C.
, and
Lee
,
K. Y.
, 2002, “
Direct Observation of Poloxamer 188 Insertion Into Lipid Monolayers
,”
Biophys. J.
0006-3495,
82
(
3
), pp.
1453
1459
.
28.
Baars
,
D. C.
,
Rundell
,
S. A.
, and
Haut
,
R. C.
, 2006, “
Treatment With the Non-Ionic Surfactant Poloxamer P188 Reduces DNA Fragmentation in Cells from Bovine Chondral Explants Exposed to Injurious Unconfined Compression
,”
Biomech. Model Mechanobiol.
,
5
(
2–3
), pp.
133
139
.
29.
Phillips
,
D. M.
, and
Haut
,
R. C.
, 2004, “
The Use of a Non-Ionic Surfactant (P188) to Save Chondrocytes From Necrosis Following Impact Loading of Chondral Explants
,”
J. Orthop. Res.
0736-0266,
22
(
5
), pp.
1135
1142
.
30.
Rundell
,
S. A.
,
Baars
,
D. C.
,
Phillips
,
D. M.
, and
Haut
,
R. C.
, 2005, “
The Limitation of Acute Necrosis in Retro-Patellar Cartilage After a Severe Blunt Impact to the In Vivo Rabbit Patello-Femoral Joint
,”
J. Orthop. Res.
0736-0266,
23
(
6
), pp.
1363
1369
.
31.
Fortier
,
L. A.
,
Mohammed
,
H. O.
,
Lust
,
G.
, and
Nixon
,
A. J.
, 2002, “
Insulin-Like Growth Factor-I Enhances Cell-Based Repair of Articular Cartilage
,”
J. Bone Joint Surg. Br.
0301-620X,
84
(
2
), pp.
276
288
.
32.
Nixon
,
A. J.
,
Saxer
,
R. A.
, and
Brower-Toland
,
B. D.
, 2001, “
Exogenous Insulin-Like Growth Factor-I Stimulates an Autoinductive Igf-I Autocrine/Paracrine Response in Chondrocytes
,”
J. Orthop. Res.
0736-0266,
19
(
1
), pp.
26
32
.
33.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Davila
,
S. G.
,
Bhaktav
,
N. R.
, and
Trippel
,
S. B.
, 2001, “
The Effect of Dynamic Compression on the Response of Articular Cartilage to Insulin-Like Growth Factor-I
,”
J. Orthop. Res.
0736-0266,
19
(
1
), pp.
11
17
.
34.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Srinivasan
,
A.
,
Davila
,
S. G.
, and
Trippel
,
S. B.
, 2000, “
Mechanical and Physicochemical Regulation of the Action of Insulin-Like Growth Factor-I on Articular Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
379
(
1
), pp.
57
63
.
35.
Sah
,
R. L.
,
Trippel
,
S. B.
, and
Grodzinsky
,
A. J.
, 1996, “
Differential Effects of Serum, Insulin-Like Growth Factor-I, and Fibroblast Growth Factor-2 on the Maintenance of Cartilage Physical Properties During Long-Term Culture
,”
J. Orthop. Res.
0736-0266,
14
(
1
), pp.
44
52
.
36.
D’Lima
,
D. D.
,
Hashimoto
,
S.
,
Chen
,
P. C.
,
Lotz
,
M. K.
, and
Colwell
,
C. W.
, Jr.
, 2001, “
Prevention of Chondrocyte Apoptosis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
83-A
, pp.
25
26
.
37.
Scott
,
C. C.
, and
Athanasiou
,
K. A.
, 2006, “
Design, Validation, and Utilization of an Articular Cartilage Impact Instrument
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
8
), pp.
845
855
.
38.
Athanasiou
,
K. A.
,
Agarwal
,
A.
,
Muffoletto
,
A.
,
Dzida
,
F. J.
,
Constantinides
,
G.
, and
Clem
,
M.
, 1995, “
Biomechanical Properties of Hip Cartilage in Experimental Animal Models
,”
Clin. Orthop. Relat. Res.
0009-921X,
316
pp.
254
266
.
39.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
, 1989, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
853
861
.
40.
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
,
Neter
,
J.
, and
William
,
L.
, 2005,
Applied Linear Statistical Models
,
McGraw-Hill
,
New York
, NY.
41.
Repo
,
R. U.
, and
Finlay
,
J. B.
, 1977, “
Survival of Articular Cartilage After Controlled Impact
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
59
(
8
), pp.
1068
1076
.
42.
Borrelli
,
J.
, Jr.
,
Zhu
,
Y.
,
Burns
,
M.
,
Sandell
,
L.
, and
Silva
,
M. J.
, 2004, “
Cartilage Tolerates Single Impact Loads of as Much as Half the Joint Fracture Threshold
,”
Clin. Orthop. Relat. Res.
0009-921X,
426
, pp.
266
273
.
43.
Serbest
,
G.
,
Horwitz
,
J.
,
Jost
,
M.
, and
Barbee
,
K.
, 2006, “
Mechanisms of Cell Death and Neuroprotection by Poloxamer 188 After Mechanical Trauma
,”
FASEB J.
0892-6638,
20
(
2
), pp.
308
310
.
44.
Lewis
,
J. L.
,
Deloria
,
L. B.
,
Oyen-Tiesma
,
M.
,
Thompson
,
R. C.
,
Ericson
,
M.
, and
Oegema
,
T. R.
, 2003, “
Cell Death After Cartilage Impact Occurs Around Matrix Cracks
,”
J. Orthop. Res.
0736-0266,
21
(
5
), pp.
881
887
.
45.
D’Lima
,
D. D.
,
Hashimoto
,
S.
,
Chen
,
P. C.
,
Colwell
, and
C. W.
, Jr.
,
Lotz
,
M. K.
, 2001, “
Human Chondrocyte Apoptosis in Response to Mechanical Injury
,”
Osteoarthritis Cartilage
1063-4584,
9
(
8
), pp.
712
719
.
46.
D’Lima
,
D. D.
,
Hashimoto
,
S.
,
Chen
,
P. C.
,
Colwell
,
C. W.
, Jr.
, and
Lotz
,
M. K.
, 2001, “
Impact of Mechanical Trauma on Matrix and Cells
,”
Clin. Orthop. Relat. Res.
0009-921X,
391
, pp.
S90
S99
.
47.
Huser
,
C. A.
,
Peacock
,
M.
, and
Davies
,
M. E.
, 2006, “
Inhibition of Caspase-9 Reduces Chondrocyte Apoptosis and Proteoglycan Loss Following Mechanical Trauma
,”
Osteoarthritis Cartilage
1063-4584,
14
(
10
), pp.
1002
1010
.
48.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
Fundamentals of Fluid Transport Through Cartilage in Compression
,”
Ann. Biomed. Eng.
0090-6964,
12
(
6
), pp.
537
558
.
49.
Morel
,
V.
,
Mercay
,
A.
, and
Quinn
,
T. M.
, 2005, “
Prestrain Decreases Cartilage Susceptibility to Injury by Ramp Compression In Vitro
,”
Osteoarthritis Cartilage
1063-4584,
13
(
11
), pp.
964
970
.
50.
Morel
,
V.
, and
Quinn
,
T. M.
, 2004, “
Short-Term Changes in Cell and Matrix Damage Following Mechanical Injury of Articular Cartilage Explants and Modelling of Microphysical Mediators
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
509
519
.
51.
DiMicco
,
M. A.
,
Patwari
,
P.
,
Siparsky
,
P. N.
,
Kumar
,
S.
,
Pratta
,
M. A.
,
Lark
,
M. W.
,
Kim
,
Y. J.
, and
Grodzinsky
,
A. J.
, 2004, “
Mechanisms and Kinetics of Glycosaminoglycan Release Following In Vitro Cartilage Injury
,”
Arthritis Rheum.
0004-3591,
50
(
3
), pp.
840
848
.
52.
Ewers
,
B. J.
,
Jayaraman
,
V. M.
,
Banglmaier
,
R. F.
, and
Haut
,
R. C.
, 2002, “
Rate of Blunt Impact Loading Affects Changes in Retropatellar Cartilage and Underlying Bone in the Rabbit Patella
,”
J. Biomech.
0021-9290,
35
(
6
), pp.
747
755
.
53.
Ewers
,
B. J.
, and
Haut
,
R. C.
, 2000, “
Polysulphated Glycosaminoglycan Treatments Can Mitigate Decreases in Stiffness of Articular Cartilage in a Traumatized Animal Joint
,”
J. Orthop. Res.
0736-0266,
18
(
5
), pp.
756
761
.
You do not currently have access to this content.