Voluntary cough maneuvers are characterized by transient peak expiratory flows (PEFs) exceeding the maximum expiratory flow-volume (MEFV) curve. In some cases, these flows can be well in excess of the MEFV, generally referred to as supramaximal flows. Understanding the flow-structure interaction involved in these maneuvers is the main goal of this study. We present a simple theoretical model for investigating the dynamics of voluntary cough and forced expiratory maneuvers. The core modeling idea is based on a 1D model of high Reynolds number flow through flexible-walled tubes. The model incorporates key ingredients involved in these maneuvers: the expiratory effort generated by the abdominal and expiratory muscles, the glottis, and the flexibility and compliance of the lung airways. Variations in these allow investigation of the expiratory flows generated by a variety of single cough maneuvers. The model successfully reproduces the transient PEFs, reported in cough studies. The amplitude of the PEFs is shown to depend on the cough generation protocol, the glottis reopening time, and the compliance of the airways. The particular highlight is in simulating supramaximal PEFs for very compliant tubes. The flow-structure interaction mechanisms behind these are discussed. The wave-speed theory of flow limitation is used to characterize the PEFs. Existing hypotheses of the origin of PEFs, from cough and forced expiration experiments, are also tested using this model. This modeling framework could be a first step toward more sophisticated cough models as well as in developing ideas for new bench-top experiments.

1.
Knudson
,
R. J.
,
Mead
,
J.
, and
Knudson
,
D. E.
, 1974, “
Contribution of Airway Collapse to Supra-Maximal Expiratory Flows
,”
J. Appl. Physiol.
0021-8987,
36
, pp.
653
667
.
2.
Fuller
,
R. W.
, 1991, Cough,
The Lung: Scientific Foundations
,
R. G.
Crystal
,
J. B.
West
, eds.
Raven Ltd.
,
New York
.
3.
Ross
,
B. B.
,
Gramiak
,
R.
, and
Rahn
,
H.
, 1955, “
Physical Dynamics of the Cough mechanism
,”
J. Appl. Physiol.
0021-8987,
8
, pp.
264
269
.
4.
King
,
M.
,
Brock
,
G.
, and
Lundell
,
C.
, 1985, “
Clearance of Mucus by Simulated Cough
,”
J. Appl. Physiol.
8750-7587,
58
, pp.
1776
1782
.
5.
Hyatt
,
R. E.
,
Schilder
,
D. P.
, and
Fry
,
D. L.
, 1958, “
Relationship Between Maximum Expiratory Flow and Degree of Lung Inflation
,”
J. Appl. Physiol.
0021-8987,
13
, pp.
331
336
.
6.
Hyatt
,
R. E.
, 1961, “
The Interrelationship of Pressure, Flow and Volume During Various Respiratory Maneuvers in Normal and Emphysematous Subjects
,”
Am. Rev. Respir. Dis.
0003-0805,
83
, pp.
676
683
.
7.
Pedley
,
T. J.
, 1977, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
229
274
.
8.
Grotberg
,
J. B.
, 2001, “
Respiratory Fluid Mechanics and Transport Processes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
421
457
.
9.
Pedersen
,
O. F.
,
Lyager
,
S.
, and
Ingram
,
R. H.
, 1985, “
Airway Dynamics in Transition Between Peak and Maximal Expiratory Flow
,”
J. Appl. Physiol.
8750-7587,
59
, pp.
1733
1746
.
10.
Sala
,
H.
,
Galindez
,
F.
,
Badolati
,
A.
, and
Rodenstein
,
D.
, 1996, “
Relationship Between Supramaximal Flows and Flow-Limiting Mechanisms
,”
Eur. Respir. J.
0903-1936,
9
, pp.
512
516
.
11.
Arora
,
N. S.
, and
Gal
,
T. J.
, 1981, “
Cough Dynamics During Progressive Expiratory Muscle Weakness in Healthy Curarized Subjects
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
51
, pp.
494
498
.
12.
Lavietes
,
M. H.
,
Smeltzer
,
S. C.
,
Cook
,
S. D.
,
Modak
,
R. M.
, and
Smaldone
,
G. C.
, 1998, “
Airway Dynamics, Oesophageal Pressure and Cough
,”
Eur. Respir. J.
0903-1936,
11
, pp.
156
161
.
13.
Chaudri
,
M. B.
,
Liu
,
C.
,
Hubbard
,
R.
,
Jefferson
,
D.
, and
Kinnear
,
W. J.
, 2002, “
Relationship Between Supramaximal Flow During Cough and Mortality in Motor Neurone Disease
,”
Eur. Respir. J.
0903-1936,
19
, pp.
434
438
.
14.
Giovanni
,
A. F.
,
Pantaleo
,
T.
,
Lavorini
,
F.
,
Mutolo
,
D.
,
Polli
,
G.
, and
Pistolesi
,
M.
, 1999, “
Coughing in Laryngectomized Patients
,”
Am. J. Respir. Crit. Care Med.
1073-449X,
160
, pp.
1578
1584
.
15.
Suleman
,
M.
,
Abaza
,
K. T.
,
Gornall
,
C.
,
Kinnear
,
W. J. M.
,
Wills
,
J. S.
, and
Mahajan
,
R. P.
, 2004, “
The Effect of a Mechanical Glottis on Peak Expiratory Flow Rate and Time to Peak Flow During a Peak Expiratory Flow Maneuver: A Study in Normal Subjects and Patients With Motor Neurone Disease
,”
Anaesthesia
0003-2409,
59
, pp.
872
875
.
16.
King
,
M.
, 1994, Invited Editorial on “
Effect of Enhanced Supramaximal Flows on Cough Clearance
,”
J. Appl. Physiol.
8750-7587,
77
, pp.
1577
1583
.
17.
Dawson
,
S. V.
, and
Elliot
,
E. A.
, 1977, “
Wave-Speed Limitation on Expiratory Flow—A Unifying Concept
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
43
, pp.
498
515
.
18.
Lambert
,
R. K.
,
Wilson
,
T. A.
,
Hyatt
,
R. E.
, and
Rodarte
,
J. R.
, 1982, “
A Computational Model for Expiratory Flow
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
52
, pp.
44
56
.
19.
Elad
,
D.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, 1988, “
Mathematical Simulation of Forced Expiration
,”
J. Appl. Physiol.
8750-7587,
65
, pp.
14
25
.
20.
Cancelli
,
C.
, and
Pedley
,
T. J.
, 1985, “
A Separated Flow Model for Collapsible Tube Oscillations
,”
J. Fluid Mech.
0022-1120,
157
, pp.
375
404
.
21.
Pedley
,
T. J.
, and
Luo
,
X. Y.
, 1998, “
Modelling Flow and Oscillations in Collapsible Tubes
,”
Theor. Comput. Fluid Dyn.
0935-4964,
10
, pp.
277
294
.
22.
Hyatt
,
R. E.
,
Wilson
,
T. A.
, and
Bar-Yishay
,
E.
, 1980, “
Prediction of Maximal Expiratory Flow in Excised Human Lungs
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
48
, pp.
991
998
.
23.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
24.
Elad
,
D.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, 1988, “
Tube Law for the Intrapulmonary Airway
,”
J. Appl. Physiol.
8750-7587,
65
, pp.
14
25
.
25.
Guneratne
,
J. C.
, 1999, “
High-Reynolds Number Flow in a Collapsible Channel
,” Ph.D. Thesis, University of Cambridge, Cambridge.
26.
Leveque
,
R. J.
, 2002,
Finite Volume Methods For Hyperbolic Problems
,
Cambridge University Press
,
Cambridge
.
27.
Jensen
,
O. E.
, 1989, “
The Existence of Steady Flow in a Collapsed Tube
,”
J. Fluid Mech.
0022-1120,
206
, pp.
339
374
.
28.
Jensen
,
O. E.
, 1990, “
Instabilities of Flow in a Collapsed Tube
,”
J. Fluid Mech.
0022-1120,
220
, pp.
623
659
.
29.
Luo
,
X. Y.
, and
Pedley
,
T. J.
, 2000, “
Multiple Solutions and Flow Limitation in Collapsible Channel Flows
,”
J. Fluid Mech.
0022-1120,
420
, pp.
301
324
.
You do not currently have access to this content.