Certain arteries (e.g., coronary, femoral, etc.) are exposed to cyclic flexure due to their tethering to surrounding tissue beds. It is believed that such stimuli result in a spatially variable biomechanical stress distribution, which has been implicated as a key modulator of remodeling associated with atherosclerotic lesion localization. In this study we utilized a combined ex vivo experimental/computational methodology to address the hypothesis that local variations in shear and mural stress associated with cyclic flexure influence the distribution of early markers of atherogenesis. Bilateral porcine femoral arteries were surgically harvested and perfused ex vivo under pulsatile arterial conditions. One of the paired vessels was exposed to cyclic flexure (00.7cm1) at 1 Hz for 12 h. During the last hour, the perfusate was supplemented with Evan's blue dye-labeled albumin. A custom tissue processing protocol was used to determine the spatial distribution of endothelial permeability, apoptosis, and proliferation. Finite element and computational fluid dynamics techniques were used to determine the mural and shear stress distributions, respectively, for each perfused segment. Biological data obtained experimentally and mechanical stress data estimated computationally were combined in an experiment-specific manner using multiple linear regression analyses. Arterial segments exposed to cyclic flexure had significant increases in intimal and medial apoptosis (3.42±1.02 fold, p=0.029) with concomitant increases in permeability (1.14±0.04 fold, p=0.026). Regression analyses revealed specific mural stress measures including circumferential stress at systole, and longitudinal pulse stress were quantitatively correlated with the distribution of permeability and apoptosis. The results demonstrated that local variation in mechanical stress in arterial segments subjected to cyclic flexure indeed influence the extent and spatial distribution of the early atherogenic markers. In addition, the importance of including mural stresses in the investigation of vascular mechanopathobiology was highlighted. Specific example results were used to describe a potential mechanism by which systemic risk factors can lead to a heterogeneous disease.

1.
McGovern
,
P. G.
,
Pankow
,
J. S.
,
Shahar
,
E.
,
Doliszny
,
K. M.
,
Folsom
,
A. R.
,
Blackburn
,
H.
, and
Luepker
,
R. V.
, 1996, “
Recent Trends in Acute Coronary Heart Disease—Mortality, Morbidity, Medical Care, and Risk Factors. The Minnesota Heart Survey Investigators
,”
N. Engl. J. Med.
0028-4793,
334
(
14
), pp.
884
890
.
2.
Cooper
,
R.
,
Cutler
,
J.
,
Desvigne-Nickens
,
P.
,
Fortmann
,
S. P.
,
Friedman
,
L.
,
Havlik
,
R.
,
Hogelin
,
G.
,
Marler
,
J.
,
McGovern
,
P.
,
Morosco
,
G.
,
Mosca
,
L.
,
Pearson
,
T.
,
Stamler
,
J.
,
Stryer
,
D.
, and
Thom
,
T.
, 2000, “
Trends and Disparities in Coronary Heart Disease, Stroke, and Other Cardiovascular Diseases in the United States: Findings of the National Conference on Cardiovascular Disease Prevention
,”
Circulation
0009-7322,
102
(
25
), pp.
3137
3147
.
3.
Wentzel
,
J. J.
,
Janssen
,
E.
,
Vos
,
J.
,
Schuurbiers
,
J. C.
,
Krams
,
R.
,
Serruys
,
P. W.
,
de Feyter
,
P. J.
, and
Slager
,
C. J.
, 2003, “
Extension of Increased Atherosclerotic Wall Thickness Into High Shear Stress Regions is Associated With Loss of Compensatory Remodeling
,”
Circulation
0009-7322,
108
(
1
), pp.
17
23
.
4.
VanEpps
,
J. S.
, and
Vorp
,
D. A.
, 2007, “
Mechanopathobiology of Atherogenesis: A Review
,”
J. Surg. Res.
0022-4804,
142
(
1
), pp.
202
217
.
5.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
(
4
), pp.
502
514
.
6.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
0021-9150,
110
(
2
), pp.
225
240
.
7.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
8.
Stein
,
P. D.
,
Hamid
,
M. S.
,
Shivkumar
,
K.
,
Davis
,
T. P.
,
Khaja
,
F.
, and
Henry
,
J. W.
, 1994, “
Effects of Cyclic Flexion of Coronary Arteries on Progression of Atherosclerosis
,”
Am. J. Cardiol.
0002-9149,
73
(
7
), pp.
431
437
.
9.
Smedby
,
O.
, 1998, “
Geometrical Risk Factors for Atherosclerosis in the Femoral Artery: A Longitudinal Angiographic Study
,”
Ann. Biomed. Eng.
0090-6964,
26
(
3
), pp.
391
397
.
10.
Robicsek
,
F.
, and
Thubrikar
,
M. J.
, 1994, “
The Freedom From Atherosclerosis of Intramyocardial Coronary Arteries: Reduction of Mural Stress–A Key Factor
,”
Eur. J. Cardiothorac Surg.
1010-7940,
8
(
5
), pp.
228
235
.
11.
Ross
,
R.
, 1993, “
The Pathogenesis of Atherosclerosis: A Perspective for the 1990s
,”
Nature (London)
0028-0836,
362
(
6423
), pp.
801
809
.
12.
Friedman
,
M. H.
,
Henderson
,
J. M.
,
Aukerman
,
J. A.
, and
Clingan
,
P. A.
, 2000, “
Effect of Periodic Alterations in Shear on Vascular Macromolecular Uptake
,”
Biorheology
0006-355X,
37
(
4
), pp.
265
277
.
13.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.
0002-9513,
286
(
5
), pp.
H1916
H1922
.
14.
Phelps
,
J. E.
, and
DePaola
,
N.
, 2000, “
Spatial Variations in Endothelial Barrier Function in Disturbed Flows In Vitro
,”
Am. J. Physiol.
0002-9513,
278
(
2
), pp.
H469
H476
.
15.
Albuquerque
,
M. L.
,
Waters
,
C. M.
,
Savla
,
U.
,
Schnaper
,
H. W.
, and
Flozak
,
A. S.
, 2000, “
Shear Stress Enhances Human Endothelial Cell Wound Closure In Vitro
,”
Am. J. Physiol.
0002-9513,
279
(
1
), pp.
H293
H302
.
16.
Ando
,
J.
,
Nomura
,
H.
, and
Kamiya
,
A.
, 1987, “
The Effect of Fluid Shear Stress on the Migration and Proliferation of Cultured Endothelial Cells
,”
Microvasc. Res.
0026-2862,
33
(
1
), pp.
62
70
.
17.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
, 1986, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
(
7
), pp.
2114
2117
.
18.
White
,
C. R.
,
Haidekker
,
M.
,
Bao
,
X.
, and
Frangos
,
J. A.
, 2001, “
Temporal Gradients in Shear, But Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
0009-7322,
103
(
20
), pp.
2508
2513
.
19.
Dimmeler
,
S.
,
Assmus
,
B.
,
Hermann
,
C.
,
Haendeler
,
J.
, and
Zeiher
,
A. M.
, 1998, “
Fluid Shear Stress Stimulates Phosphorylation of Akt in Human Endothelial Cells: Involvement in Suppression of Apoptosis
,”
Circ. Res.
0009-7330,
83
(
3
), pp.
334
341
.
20.
Tricot
,
O.
,
Mallat
,
Z.
,
Heymes
,
C.
,
Belmin
,
J.
,
Leseche
,
G.
, and
Tedgui
,
A.
, 2000, “
Relation Between Endothelial Cell Apoptosis and Blood Flow Direction in Human Atherosclerotic Plaques
,”
Circulation
0009-7322,
101
(
21
), pp.
2450
2453
.
21.
Liu
,
X. M.
,
Ensenat
,
D.
,
Wang
,
H.
,
Schafer
,
A. I.
, and
Durante
,
W.
, 2003, “
Physiologic Cyclic Stretch Inhibits Apoptosis in Vascular Endothelium
,”
FEBS Lett.
0014-5793,
541
(
1–3
), pp.
52
56
.
22.
Sumpio
,
B. E.
,
Banes
,
A. J.
,
Levin
,
L. G.
, and
Johnson
,
G.
, 1987, “
Mechanical Stress Stimulates Aortic Endothelial Cells to Proliferate
,”
J. Vasc. Surg.
0741-5214,
6
(
3
), pp.
252
256
.
23.
Haga
,
M.
,
Chen
,
A.
,
Gortler
,
D.
,
Dardik
,
A.
, and
Sumpio
,
B. E.
, 2003, “
Shear Stress and Cyclic Strain May Suppress Apoptosis in Endothelial Cells by Different Pathways
,”
Endothelium
1062-3329,
10
(
3
), pp.
149
157
.
24.
Birukov
,
K. G.
,
Jacobson
,
J. R.
,
Flores
,
A. A.
,
Ye
,
S. Q.
,
Birukova
,
A. A.
,
Verin
,
A. D.
, and
Garcia
,
J. G.
, 2003, “
Magnitude-Dependent Regulation of Pulmonary Endothelial Cell Barrier Function by Cyclic Stretch
,”
Am. J. Physiol.
0002-9513,
285
(
4
), pp.
L785
L797
.
25.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2000, “
Dynamics Of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
488
492
.
26.
Gross
,
M. F.
, and
Friedman
,
M. H.
, 1998, “
Dynamics of Coronary Artery Curvature Obtained From Biplane Cineangiograms
,”
J. Biomech.
0021-9290,
31
(
5
), pp.
479
484
.
27.
Pao
,
Y. C.
,
Lu
,
J. T.
, and
Ritman
,
E. L.
, 1992, “
Bending and Twisting of an In Vivo Coronary Artery at a Bifurcation
,”
J. Biomech.
0021-9290,
25
(
3
), pp.
287
295
.
28.
Smouse
,
B.
,
Nikanorov
,
A.
, and
LaFlash
,
D.
, 2005, “
Biomechanical Forces in the Femororpopliteal Arterial Segment
,”
Endovasc. Today
,
4
, pp.
60
66
.
29.
Ramaswamy
,
S. D.
,
Vigmostad
,
S. C.
,
Wahle
,
A.
,
Lai
,
Y. G.
,
Olszewski
,
M. E.
,
Braddy
,
K. C.
,
Brennan
,
T. M.
,
Rossen
,
J. D.
,
Sonka
,
M.
, and
Chandran
,
K. B.
, 2004, “
Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery With Arterial Motion
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1628
1641
.
30.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
420
429
.
31.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
32.
Berceli
,
S. A.
,
Borovetz
,
H. S.
,
Sheppeck
,
R. A.
,
Moosa
,
H. H.
,
Warty
,
V. S.
,
Armany
,
M. A.
, and
Herman
,
I. M.
, 1991, “
Mechanisms of Vein Graft Atherosclerosis: LDL Metabolism and Endothelial Actin Reorganization
,”
J. Vasc. Surg.
0741-5214,
13
(
2
), pp.
336
347
.
33.
VanEpps
,
J. S.
,
Londono
,
R.
,
Nieponice
,
A.
, and
Vorp
,
D. A.
, 2008, “
Design and Validation of a System to Simulate Coronary Flexure Dynamics on Arterial Segments Perfused Ex Vivo
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
,
57
66
.
34.
Vorp
,
D. A.
,
Peters
,
D. G.
, and
Webster
,
M. W.
, 1999, “
Gene Expression Is Altered in Perfused Arterial Segments Exposed to Cyclic Flexure Ex Vivo
,”
Ann. Biomed. Eng.
0090-6964,
27
(
3
), pp.
366
371
.
35.
Vorp
,
D. A.
,
Severyn
,
D. A.
,
Steed
,
D. L.
, and
Webster
,
M. W.
, 1996, “
A Device for the Application of Cyclic Twist and Extension on Perfused Vascular Segments
,”
Am. J. Physiol.
0002-9513,
270
(
2 Pt 2
), pp.
H787
795
.
36.
Muluk
,
S. C.
,
Vorp
,
D. A.
,
Severyn
,
D. A.
,
Gleixner
,
S.
,
Johnson
,
P. C.
, and
Webster
,
M. W.
, 1998, “
Enhancement of Tissue Factor Expression by Vein Segments Exposed to Coronary Arterial Hemodynamics
,”
J. Vasc. Surg.
0741-5214,
27
(
3
), pp.
521
527
.
37.
Severyn
,
D. A.
,
Muluk
,
S. C.
, and
Vorp
,
D. A.
, 2004, “
The Influence of Hemodynamics and Wall Biomechanics on the Thrombogenicity of Vein Segments Perfused In Vitro
,”
J. Surg. Res.
0022-4804,
121
(
1
), pp.
31
37
.
38.
Lally
,
C.
,
Reid
,
A. J.
, and
Prendergast
,
P. J.
, 2004, “
Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension
,”
Ann. Biomed. Eng.
0090-6964,
32
(
10
), pp.
1355
1364
.
39.
ABAQUS, Inc.
, 2004, “
ABAQUS 6.5 Documentation
,” ABAQUS, Inc., Beachwood, OH.
40.
Friedman
,
M. H.
,
Baker
,
P. B.
,
Ding
,
Z.
, and
Kuban
,
B. D.
, 1996, “
Relationship Between the Geometry and Quantitative Morphology of the Left Anterior Descending Coronary Artery
,”
Atherosclerosis
0021-9150,
125
(
2
), pp.
183
192
.
41.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
(
4
), pp.
632
639
.
42.
Thubrikar
,
M. J.
, and
Robicsek
,
F.
, 1995, “
Pressure-Induced Arterial Wall Stress and Atherosclerosis
,”
Ann. Thorac. Surg.
0003-4975,
59
(
6
), pp.
1594
1603
.
43.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
44.
Iwami
,
T.
,
Fujii
,
T.
,
Miura
,
T.
,
Otani
,
N.
,
Iida
,
H.
,
Kawamura
,
A.
,
Yoshitake
,
S.
,
Kohno
,
M.
,
Hisamatsu
,
Y.
,
Iwamoto
,
H.
, and
Matsuzaki
,
M.
, 1998, “
Importance of Left Anterior Descending Coronary Artery Curvature in Determining Cross-Sectional Plaque Distribution Assessed by Intravascular Ultrasound
,”
Am. J. Cardiol.
0002-9149,
82
(
3
), pp.
381
384
.
45.
Ainslie
,
K. M.
,
Garanich
,
J. S.
,
Dull
,
R. O.
, and
Tarbell
,
J. M.
, 2005, “
Vascular Smooth Muscle Cell Glycocalyx Influences Shear Stress-Mediated Contractile Response
,”
J. Appl. Physiol.
8750-7587,
98
(
1
), pp.
242
249
.
46.
Chen
,
K. D.
,
Li
,
Y. S.
,
Kim
,
M.
,
Li
,
S.
,
Yuan
,
S.
,
Chien
,
S.
, and
Shyy
,
J. Y.
, 1999, “
Mechanotransduction in Response to Shear Stress. Roles of Receptor Tyrosine Kinases, Integrins, and Shc
,”
J. Biol. Chem.
0021-9258,
274
(
26
), pp.
18393
18400
.
47.
Gautam
,
M.
,
Gojova
,
A.
, and
Barakat
,
A. I.
, 2006, “
Flow-Activated Ion Channels in Vascular Endothelium
,”
Cell Biochem. Biophys.
1085-9195,
46
(
3
), pp.
277
284
.
48.
Berceli
,
S. A.
,
Warty
,
V. S.
,
Sheppeck
,
R. A.
,
Mandarino
,
W. A.
,
Tanksale
,
S. K.
, and
Borovetz
,
H. S.
, 1990, “
Hemodynamics and Low Density Lipoprotein Metabolism. Rates of Low Density Lipoprotein Incorporation and Degradation Along Medial and Lateral Walls of the Rabbit Aorto-Iliac Bifurcation
,”
Arteriosclerosis
,
10
(
5
), pp.
686
694
. 0276-5047
You do not currently have access to this content.