Advanced solid freeform fabrication (SFF) techniques have been an interest for constructing tissue engineered polymeric scaffolds because of its repeatability and capability of high accuracy in fabrication resolution at the scaffold macro- and microscales. Among many important scaffold applications, hydrogel scaffolds have been utilized in tissue engineering as a technique to confide the desired proliferation of seeded cells in vitro and in vivo into its architecturally porous three-dimensional structures. Such fabrication techniques not only enable the reconstruction of scaffolds with accurate anatomical architectures but also enable the ability to incorporate bioactive species such as growth factors, proteins, and living cells. This paper presents a bioprinting system designed for the freeform fabrication of porous alginate scaffolds with encapsulated endothelial cells. The bioprinting fabrication system includes a multinozzle deposition system that utilizes SFF techniques and a computer-aided modeling system capable of creating heterogeneous tissue scaffolds. The manufacturing process is biologically compatible and is capable of functioning at room temperature and relatively low pressures to reduce the fluidic shear forces that could deteriorate biologically active species. The deposition system resolution is 10μm in the three orthogonal directions XYZ and has minimum velocity of 100μm/s. The ideal concentrations of sodium alginate and calcium chloride were investigated to determine a viable bioprinting process. The results indicated that the suitable fabrication parameters were 1.5% (w/v) sodium alginate and 0.5% (w/v) calcium chloride. Degradation studies via mechanical testing showed a decrease in the elastic modulus by 35% after 3 weeks. Cell viability studies were conducted on the cell encapsulated scaffolds for validating the bioprinting process and determining cell viability of 83%. This work exhibits the potential use of accurate cell placement for engineering complex tissue regeneration using computer-aided design systems.

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
2.
Mikos
,
A. G.
,
Herring
,
S. W.
,
Ochareon
,
P.
,
Elisseeff
,
J.
,
Helen
,
H.
,
Lu
,
R. K.
,
Schoen
,
F. J.
,
Toner
,
M.
,
Mooney
,
D.
,
Atala
,
A.
,
Dyke
,
M. E. V.
,
Kaplan
,
D.
, and
Vunjak-Novakovic
,
G.
, 2006, “
Engineering Complex Tissues
,”
Tissue Eng.
1076-3279,
12
(
12
), pp.
3307
3339
.
3.
Langer
,
R.
, 2007, “
Tissue Engineering: Perspectives, Challenges, and Future Directions
,”
Tissue Eng.
1076-3279,
13
(
1
), pp.
1
2
.
4.
Vacanti
,
C. A.
, 2006, “
History of Tissue Engineering and a Glimpse Into Its Future
,”
Tissue Eng.
1076-3279,
12
(
5
), pp.
1137
1142
.
5.
Langer
,
R.
, 2000, “
Tissue Engineering
,”
Mol. Ther.
,
1
(
1
), pp.
12
15
. 1525-0016
6.
Vacanti
,
J. P.
, and
Langer
,
R.
, 1999, “
Tissue Engineering: The Design and Fabrication of Living Replacement Devices for Surgical Reconstruction and Transplantation
,”
Lancet
0140-6736,
354
, pp.
S32
S34
.
7.
Kretlow
,
J. D.
, and
Mikos
,
A. G.
, 2007, “
Mineralization of Synthetic Polymer Scaffolds for Bone Tissue Engineering
,”
Tissue Eng.
1076-3279,
13
(
5
), pp.
927
938
.
8.
Bhatia
,
S. N.
, and
Chen
,
C. S.
, 1999, “
Tissue Engineering at the Microscale
,”
Biomed. Microdevices
1387-2176,
2
(
2
), pp.
131
144
.
9.
Shin
,
H.
,
Jo
,
S.
, and
Mikos
,
A. G.
, 2003, “
Biomimetic Materials for Tissue Engineering
,”
Biomaterials
0142-9612,
24
(
24
), pp.
4353
4364
.
10.
Leong
,
K. F.
,
Cheah
,
C. M.
, and
Chua
,
C. K.
, 2003, “
Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs
,”
Biomaterials
0142-9612,
24
(
13
), pp.
2363
2378
.
11.
Freyman
,
T. M.
,
Yannas
,
I. V.
, and
Gibson
,
L. J.
, 2001, “
Cellular Materials as Porous Scaffolds for Tissue Engineering
,”
Prog. Mater. Sci.
0079-6425,
46
(
3–4
), pp.
273
282
.
12.
Ciapetti
,
G.
,
Ambrosio
,
L.
,
Savarino
,
L.
,
Granchi
,
D.
,
Cenni
,
E.
,
Baldini
,
N.
,
Pagani
,
S.
,
Guizzardi
,
S.
,
Causa
,
F.
, and
Giunti
,
A.
, 2003, “
Osteoblast Growth and Function in Porous Poly ε
-Caprolactone Matrices for Bone Repair: A Preliminary Study,”
Biomaterials
0142-9612,
24
(
21
), pp.
3815
3824
.
13.
Mauck
,
R. L.
,
Wang
,
C. C. B.
,
Oswald
,
E. S.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2003, “
The Role of Cell Seeding Density and Nutrient Supply for Articular Cartilage Tissue Engineering With Deformational Loading
,”
Osteoarthritis Cartilage
1063-4584,
11
(
12
), pp.
879
890
.
14.
Zeltinger
,
J.
,
Sherwood
,
J. K.
,
Graham
,
D. A.
,
Mueller
,
R.
, and
Griffith
,
L. G.
, 2001, “
Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition
,”
Tissue Eng.
1076-3279,
7
(
5
), pp.
557
572
.
15.
Zein
,
I.
,
Hutmacher
,
D. W.
,
Tan
,
K. C.
, and
Teoh
,
S. H.
, 2002, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
0142-9612,
23
(
4
), pp.
1169
1185
.
16.
Wake
,
M. C.
,
Patrick
,
C. W.
, and
Mikos
,
A. G.
, 1994, “
Pore Morphology Effects on the Fibrovascular Tissue-Growth in Porous Polymer Substrates
,”
Cell Transplant.
,
3
(
4
), pp.
339
343
. 0963-6897
17.
Mikos
,
A. G.
,
Thorsen
,
A. J.
,
Czerwonka
,
L. A.
,
Bao
,
Y.
,
Langer
,
R.
,
Winslow
,
D. N.
, and
Vacanti
,
J. P.
, 1994, “
Preparation and Characterization of Poly(L-Lactic Acid) Foams
,”
Polymer
0032-3861,
35
(
5
), pp.
1068
1077
.
18.
Babensee
,
J. E.
,
Cornelius
,
R. M.
,
Brash
,
J. L.
, and
Sefton
,
M. V.
, 1998, “
Immunoblot Analysis of Proteins Associated With HEMA-MMA Microcapsules: Human Serum Proteins in vitro and Rat Proteins Following Implantation
,”
Biomaterials
0142-9612,
19
(
7–9
), pp.
839
849
.
19.
Porter
,
R. M.
,
Akers
,
R. M.
,
Howard
,
R. D.
, and
Forsten-Williams
,
K.
, 2007, “
Alginate Encapsulation Impacts the Insulin-Like Growth Factor-I System of Monolayer-Expanded Equine Articular Chondrocytes and Cell Response to Interleukin-1β
,”
Tissue Eng.
1076-3279,
13
(
6
), pp.
1333
1345
.
20.
Drury
,
J. L.
, and
Mooney
,
D. J.
, 2003, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
0142-9612,
24
(
24
), pp.
4337
4351
.
21.
Landers
,
R.
,
Hubner
,
U.
,
Schmelzeisen
,
R.
, and
Mulhaupt
,
R.
, 2002, “
Rapid Prototyping of Scaffolds Derived From Thermoreversible Hydrogels and Tailored for Applications in Tissue Engineering
,”
Biomaterials
0142-9612,
23
(
23
), pp.
4437
4447
.
22.
Martinsen
,
A.
,
Skjåk-Braek
,
G.
, and
Smidsrød
,
O.
, 1989, “
Alginate as Immobilization Material: I. Correlation Between Chemical and Physical Properties of Alginate Gel Beads
,”
Biotechnol. Bioeng.
0006-3592,
33
, pp.
79
89
.
23.
Paige
,
K. T.
,
Cima
,
L. G.
,
Yaremchuk
,
M. J.
,
Schloo
,
B. L.
,
Vacanti
,
J. P.
, and
Vacanti
,
C. A.
, 1996, “
De Novo Cartilage Generation Using Calcium Alginate-Chondrocyte Constructs
,”
Plast. Reconstr. Surg.
0032-1052,
97
(
1
), pp.
168
178
.
24.
Stevens
,
M. M.
,
Qanadilo
,
H. F.
,
Langer
,
R.
, and
Shastri
,
V. P.
, 2004, “
A Rapid-Curing Alginate Gel System: Utility in Periosteum-Derived Cartilage Tissue Engineering
,”
Biomaterials
0142-9612,
25
(
5
), pp.
887
894
.
25.
Lam
,
C. X. F.
,
Mo
,
X. M.
,
Teoh
,
S. H.
, and
Hutmacher
,
D. W.
, 2002, “
Scaffold Development Using 3D Printing With a Starch-Based Polymer
,”
Mater. Sci. Eng., C
0928-4931,
20
(
1–2
), pp.
49
56
.
26.
Sachlos
,
E.
,
Reis
,
N.
,
Ainsley
,
C.
,
Derby
,
B.
, and
Czernuszka
,
J. T.
, 2003, “
Novel Collagen Scaffolds With Predefined Internal Morphology Made by Solid Freeform Fabrication
,”
Biomaterials
0142-9612,
24
(
8
), pp.
1487
1497
.
27.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
, 2004, “
Computer-Aided Tissue Engineering: Overview, Scope and Challenges
,”
Biotechnol. Appl. Biochem.
0885-4513,
39
, pp.
29
47
.
28.
Sun
,
W.
, and
Lal
,
P.
, 2002, “
Recent Development on Computer Aided Tissue Engineering—A Review
,”
Comput. Methods Programs Biomed.
0169-2607,
67
(
2
), pp.
85
103
.
29.
Sun
,
W.
,
Starly
,
B.
,
Darling
,
A.
, and
Gomez
,
C.
, 2004, “
Computer-Aided Tissue Engineering: Application to Biomimetic Modelling and Design of Tissue Scaffolds
,”
Biotechnol. Appl. Biochem.
0885-4513,
39
, pp.
49
58
.
30.
Sun
,
W.
,
Yan
,
Y.
,
Lin
,
F.
, and
Spector
,
M.
, 2006, “
Biomanufacturing: A US-China National Science Foundation-Sponsored Workshop
,”
Tissue Eng.
1076-3279,
12
(
5
), pp.
1169
1181
.
31.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
, 2005, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
1355-2546,
11
(
1
), pp.
9
17
.
32.
Khalil
,
S.
, and
Sun
,
W.
, 2007, “
Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,”
Mater. Sci. Eng., C
0928-4931,
27
, pp.
469
478
.
33.
Nerem
,
R. M.
, 2006, “
Tissue Engineering: The Hope, the Hype, and the Future
,”
Tissue Eng.
1076-3279,
12
(
5
), pp.
1143
1150
.
You do not currently have access to this content.