We use an implicit large eddy simulation (ILES) method based on a finite volume approach to capture the turbulence in the anastomoses of a left ventricular assist device (LVAD) to the aorta. The order-of-accuracy of the numerical schemes is computed using a two-dimensional decaying Taylor–Green vortex. The ILES method is carefully validated by comparing to documented results for a fully developed turbulent channel flow at Reτ=395. Two different anastomotic flows (proximal and distal) are simulated for 50% and 100% LVAD supports and the results are compared with a healthy aortic flow. All the analyses are based on a planar aortic model under steady inflow conditions for simplification. Our results reveal that the outflow cannulae induce high exit jet flows in the aorta, resulting in turbulent flow. The distal configuration causes more turbulence in the aorta than the proximal configuration. The turbulence, however, may not cause any hemolysis due to low Reynolds stresses and relatively large Kolmogorov length scales compared with red blood cells. The LVAD support causes an acute increase in flow splitting in the major branch vessels for both anastomotic configurations, although its long-term effect on the flow splitting remains unknown. A large increase in wall shear stress is found near the cannulation sites during the LVAD support. This work builds a foundation for more physiologically realistic simulations under pulsatile flow conditions.

1.
Copeland
,
J. G.
,
Arabia
,
F. A.
,
Tsau
,
P. H.
,
Nolan
,
P. E.
,
McClellan
,
D.
,
Smith
,
R. G.
, and
Slepian
,
M. J.
, 2003, “
Total Artificial Hearts: Bridge to Transplantation
,”
Cardiol. Clin.
0733-8651,
21
, pp.
101
113
.
2.
Weitkemper
,
H. H.
,
El-Banayosy
,
A.
,
Arusoglu
,
L.
,
Sarnowski
,
P.
, and
Korfer
,
R.
, 2004, “
Mechanical Circulatory Support: Reality and Dreams Experience of a Single Center
,”
Journal of Extra-Corporeal Technology
,
36
(
2
), pp.
169
173
. 0022-1058
3.
Dang
,
N. C.
,
Topkara
,
V. K.
,
Kim
,
B. T.
,
Mercando
,
M. L.
,
Kay
,
J.
, and
Naka
,
Y.
, 2005, “
Clinical Outcomes in Patients With Chronic Congestive Heart Failure Who Undergo Left Ventricular Assist Device Implantation
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
130
, pp.
1302
1309
.
4.
Kalya
,
A. V.
,
Tector
,
A. J.
,
Crouch
,
J. D.
,
Downey
,
F. X.
,
McDonald
,
M. L.
,
Anderson
,
A. J.
,
Bartoszewski
,
C. J.
, and
Hosenpud
,
J. D.
, 2005, “
Comparison of Novacor and HeartMate Vented Electric Left Ventricular Assist Devices in a Single Institution
,”
J. Heart Lung Transplant
1053-2498,
24
(
11
), pp.
1973
1975
.
5.
Rose
,
E. A.
,
Gelijns
,
A. C.
,
Moskowitz
,
A. J.
,
Heitjan
,
D. F.
,
Stevenson
,
L. W.
,
Dembitsky
,
W.
,
Long
,
J. W.
,
Ascheim
,
D. D.
,
Tierney
,
A. R.
,
Levitan
,
R. G.
,
Watson
,
J. T.
,
Meier
,
P.
,
Ronan
,
N. S.
,
Shapiro
,
P. A.
,
Lazar
,
R. M.
,
Miller
,
L. W.
,
Gupta
,
L.
,
Frazier
,
O. H.
,
Desvigne-Nickens
,
P.
,
Oz
,
M. C.
,
Poirier
,
V. L.
, and Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group, 2001, “
Long-Term Mechanical Left Ventricular Assistance for End-Stage Heart Failure
,”
N. Engl. J. Med.
0028-4793,
345
(
20
), pp.
1435
1443
.
6.
Neaton
,
J. D.
,
Normand
,
S. L.
,
Gelijns
,
A.
,
Starling
,
R. C.
,
Mann
,
D. L.
, and
Konstam
,
M. A.
, 2007, “
Designs for Mechanical Circulatory Support Device Studies
,”
J. Card. Fail
1071-9164,
13
(
1
), pp.
63
74
.
7.
DiGiorgi
,
P. L.
,
Smith
,
D. L.
,
Naka
,
Y.
, and
Oz
,
M. C.
, 2004, “
In Vitro Characterization of Aortic Retrograde and Antegrade Flow From Pulsatile and Non-Pulsatile Ventricular Assist Devices
,”
J. Heart Lung Transplant
1053-2498,
23
(
2
), pp.
186
192
.
8.
Minakawa
,
M.
,
Fukuda
,
I.
,
Yamazaki
,
J.
,
Fukui
,
K.
,
Yanaoka
,
H.
, and
Inamura
,
T.
, 2007, “
Effect of Cannula Shape on Aortic Wall and Flow Turbulence: Hydrodynamic Study During Extracorporeal Circulation in Mock Thoracic Aorta
,”
Artif. Organs
0160-564X,
31
, pp.
880
886
.
9.
Daily
,
B. B.
,
Pettitt
,
T. W.
,
Sutera
,
S. P.
, and
Pierce
,
W. S.
, 1996, “
Pierce-Donachy Pediatric VAD: Progress in Development
,”
Ann. Thorac. Surg.
0003-4975,
61
, pp.
437
443
.
10.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Fluid Dynamic Analysis of the 50 CC Penn State Artificial Heart Under Physiological Operating Conditions Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
585
593
.
11.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Throckmorton
,
A. L.
,
Day
,
S.
,
Patel
,
S. M.
,
Ellman
,
P.
,
Tribble
,
C.
, and
Olsen
,
D. B.
, 2005, “
Computational Design and Experimental Testing of a Novel Axial Flow LVAD
,”
ASAIO J.
1058-2916,
51
(
6
), pp.
702
710
.
12.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
, 2006, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
65
86
.
13.
Manning
,
K. B.
,
Wivholm
,
B. D.
,
Yang
,
N.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2008, “
Flow Behavior Within the 12-CC Penn State Pulsatile Pediatric Ventricular Assist Device: An Experimental Study of the Initial Design
,”
Artif. Organs
0160-564X,
32
(
6
), pp.
442
452
.
14.
Sherwin
,
S. J.
,
Shah
,
O.
,
Doorly
,
D. J.
,
Peiro
,
J.
,
Papaharilaou
,
Y.
,
Watkins
,
N.
,
Caro
,
C. G.
, and
Dumoulin
,
C. L.
, 2000, “
The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
86
95
.
15.
May-Newman
,
K.
,
Hillen
,
B.
, and
Dembitsky
,
W.
, 2006, “
Effect of Left Ventricular Assist Device Outflow Conduit Anastomosis Location on Flow Patterns in the Native Aorta
,”
ASAIO J.
1058-2916,
52
, pp.
132
139
.
16.
Litwak
,
K. N.
,
Koenig
,
S. C.
,
Tsukui
,
H.
,
Kihara
,
S.
,
Wu
,
Z.
, and
Pantalos
,
G. M.
, 2004, “
Effects of Left Ventricular Assist Device Support and Outflow Graft Location Upon Aortic Blood Flow
,”
ASAIO J.
1058-2916,
50
, pp.
432
437
.
17.
Litwak
,
K. N.
,
Koenig
,
S. C.
,
Cheng
,
R. C.
,
Giridharan
,
G. A.
,
Gillars
,
K. J.
, and
Pantalos
,
G. M.
, 2005, “
Ascending Aorta Outflow Graft Location and Pulsatile Ventricular Assist Provide Optimal Hemodynamic Support in an Adult Mock Circulation
,”
Artif. Organs
0160-564X,
29
, pp.
629
635
.
18.
Grinstein
,
F. F.
, and
DeVore
,
C. R.
, 1996, “
Dynamics of Coherent Structures and Transition to Turbulence in Free Square Jets
,”
Phys. Fluids
1070-6631,
8
, pp.
1237
1251
.
19.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
, 1992, “
New Insights Into Large Eddy Simulation. Fluid Dynamics Research
,”
Fluid Dyn. Res.
0169-5983,
10
, pp.
199
228
.
20.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1997, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
9
, pp.
1416
1429
.
21.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2004, “
From Canonical to Complex Flows: Recent Progress on Monotonically Integrated LES
,”
Comput. Sci. Eng.
1521-9615,
6
, pp.
36
49
.
22.
Grinstein
,
F. F.
,
Fureby
,
C.
, and
DeVore
,
C. R.
, 2005, “
On MILES Based on Flux-Limiting Algorithm
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
1043
1051
.
23.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2007, “
On Flux-Limiting-Based Implicit Large Eddy Simulation
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1483
1492
.
24.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
378
387
.
25.
OpenCFD Ltd.
, 2008, OPENFOAM 1.5 User Guide.
26.
Fureby
,
C.
, and
Grinstein
,
F. F.
, 2002, “
Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows
,”
J. Comput. Phys.
0021-9991,
181
(
1
), pp.
68
97
.
27.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
28.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2006, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5685
5706
.
29.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
30.
Middleman
,
S.
, 1972,
Transport Phenomena in the Cardiovascular System
,
Wiley
,
New York
.
31.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
(
2
), pp.
308
323
.
32.
Yoshizawa
,
A.
, 1986, “
Statistical Theory for Compressible Shear Flows, With the Application to Subgrid Modelling
,”
Phys. Fluids
1070-6631,
29
, pp.
2152
2164
.
33.
van Driest
,
E. R.
, 1956, “
On Turbulent Flow Near a Wall
,”
J. Aerosp. Sci.
0095-9820,
23
(
11
), pp.
1007
1011
.
34.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
(
4
), pp.
943
945
.
35.
Higdon
,
A.
,
Ohlsen
,
E.
, and
Stiles
,
W. B.
, 1988,
Mechanics of Materials
,
Wiley
,
New York
.
36.
Weinstein
,
G. S.
, 2001, “
Left Hemispheric Strokes in Coronary Surgery: Implications for End-Hole Aortic Cannulas
,”
Ann. Thorac. Surg.
0003-4975,
71
(
1
), pp.
128
132
.
37.
Grooters
,
R. K.
,
Ver Steeg
,
D. A.
,
Stewart
,
M. J.
,
Thieman
,
K. C.
, and
Schneider
,
R. F.
, 2003, “
Echocardiographic Comparison of the Standard End-Hole Cannula, the Soft-Flow Cannula, and the Dispersion Cannula During Perfusion Into the Aortic Arch
,”
Ann. Thorac. Surg.
0003-4975,
75
, pp.
1919
1923
.
38.
Sallam
,
A. M.
, and
Hwang
,
N. H.
, 1984, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
0006-355X,
21
(
6
), pp.
783
797
.
39.
Mathieu
,
J.
, and
Scott
,
J.
, 2000,
An Introduction to Turbulent Flow
,
Cambridge University Press
,
New York
.
40.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Mark
,
F. F.
, 1981, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
0021-9150,
39
(
3
), pp.
425
436
.
41.
Chandran
,
K. B.
, 1993, “
Flow Dynamics in the Human Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
611
616
.
42.
Sezai
,
A.
,
Shiono
,
M.
,
Orime
,
Y.
,
Nakata
,
K.
,
Hata
,
M.
,
Iida
,
M.
,
Kashiwazaki
,
S.
,
Kinoshita
,
J.
,
Nemoto
,
M.
,
Koujima
,
T.
,
Furuichi
,
M.
,
Eda
,
K.
,
Hirose
,
H.
,
Yoshino
,
T.
,
Saitoh
,
A.
,
Taniguchi
,
Y.
, and
Sezai
,
Y.
, 1999, “
Major Organ Function Under Mechanical Support: Comparative Studies of Pulsatile and Nonpulsatile Circulation
,”
Artif. Organs
0160-564X,
23
(
3
), pp.
280
285
.
You do not currently have access to this content.