The compression behavior of spinal cord tissue is important for understanding spinal cord injury mechanics but has not yet been established. Characterizing compression behavior assumes precise specimen geometry; however, preparing test specimens of spinal cord tissue is complicated by the extreme compliance of the tissue. The objectives of this study were to determine the effect of flash freezing on both specimen preparation and mechanical response and to quantify the effect of small deviations in specimen geometry on mechanical behavior. Specimens of porcine spinal cord white matter were harvested immediately following sacrifice. The tissue was divided into two groups: partially frozen specimens were flash frozen (60 s at 80°C) prior to cutting, while fresh specimens were kept at room temperature. Specimens were tested in unconfined compression at strain rates of 0.05s1 and 5.0s1 to 40% strain. Parametric finite element analyses were used to investigate the effect of specimen face angle, cross section, and interface friction on the mechanical response. Flash freezing did not affect the mean mechanical behavior of the tissue but did reduce the variability in the response across specimens (p<0.05). Freezing also reduced variability in the specimen geometry. Variations in specimen face angle (0–10 deg) resulted in a 34% coefficient of variation and a 60% underestimation of peak stress. The effect of geometry on variation and error was greater than that of interface friction. Taken together, these findings demonstrate the advantages of flash freezing in biomechanical studies of spine cord tissue.

1.
Bunge
,
R. P.
,
Puckett
,
W. R.
,
Becerra
,
J. L.
,
Marcillo
,
A.
, and
Quencer
,
R. M.
, 1993, “
Observations on the Pathology of Human Spinal Cord Injury. A Review and Classification of 22 New Cases With Details From a Case of Chronic Cord Compression With Extensive Focal Demyelination
,”
Adv. Neurol.
0091-3952,
59
, pp.
75
89
.
2.
Kakulas
,
B. A.
, 1999, “
The Applied Neuropathology of Human Spinal Cord Injury
,”
Spinal Cord
1362-4393,
37
(
2
), pp.
79
88
.
3.
Metz
,
G. A.
,
Curt
,
A.
,
Van De Meent
,
H.
,
Klusman
,
I.
,
Schwab
,
M. E.
, and
Dietz
,
V.
, 2000, “
Validation of the Weight-Drop Contusion Model in Rats: A Comparative Study of Human Spinal Cord Injury
,”
J. Neurotrauma
0897-7151,
17
(
1
), pp.
1
17
.
4.
Tator
,
C. H.
, 1983, “
Spine-Spinal Cord Relationships in Spinal Cord Trauma
,”
Clin. Neurosurg.
0069-4827,
30
, pp.
479
494
.
5.
Cheng
,
S.
, and
Bilston
,
L. E.
, 2007, “
Unconfined Compression of White Matter
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
117
124
.
6.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modelling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
(
11–12
), pp.
1115
1121
.
7.
Tamura
,
A.
,
Hayashi
,
S.
,
Watanabe
,
I.
,
Nagayama
,
K.
, and
Matsumoto
,
T.
, 2007, “
Mechanical Characterization of Brain Tissue in High-Rate Compression
,”
Journal of Biomechanical Science and Engineering
,
2
(
3
), pp.
115
126
.
8.
Garo
,
A.
,
Hrapko
,
M.
,
Van Dommelen
,
J. A.
, and
Peters
,
G. W.
, 2007, “
Towards a Reliable Characterisation of the Mechanical Behaviour of Brain Tissue: The Effects of Post-Mortem Time and Sample Preparation
,”
Biorheology
0006-355X,
44
(
1
), pp.
51
58
.
9.
Oakland
,
R. J.
,
Hall
,
R. M.
,
Wilcox
,
R. K.
, and
Barton
,
D. C.
, 2006, “
The Biomechanical Response of Spinal Cord Tissue to Uniaxial Loading
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
4
), pp.
489
492
.
10.
Gervaso
,
F.
,
Pennati
,
G.
, and
Boschetti
,
F.
, 2007, “
Effect of Geometrical Imperfections in Confined Compression Tests on Parameter Evaluation of Hydrated Soft Tissues
,”
J. Biomech.
0021-9290,
40
(
13
), pp.
3041
3044
.
11.
Keaveny
,
T. M.
,
Borchers
,
R. E.
,
Gibson
,
L. J.
, and
Hayes
,
W. C.
, 1993, “
Theoretical Analysis of the Experimental Artifact in Trabecular Bone Compressive Modulus
,”
J. Biomech.
0021-9290,
26
(
4–5
), pp.
599
607
.
12.
Ichihara
,
K.
,
Taguchi
,
T.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
, 2003, “
Mechanism of the Spinal Cord Injury and the Cervical Spondylotic Myelopathy: New Approach Based on the Mechanical Features of the Spinal Cord White and Gray Matter
,”
J. Neurosurg.
0022-3085,
99
(
3
), pp.
278
285
.
13.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
, 2001, “
Gray Matter of the Bovine Cervical Spinal Cord Is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
0897-7151,
18
(
3
), pp.
361
367
.
14.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
483
490
.
15.
Ho
,
M. M.
,
Kelly
,
T. A.
,
Guo
,
X. E.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2006, “
Spatially Varying Material Properties of the Rat Caudal Intervertebral Disc
,”
Spine
0362-2436,
31
(
15
), pp.
E486
E493
.
16.
Perie
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
, 2005, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
0021-9290,
38
(
11
), pp.
2164
2171
.
17.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
J. Biomech.
0021-9290,
37
(
9
), pp.
1339
1352
.
18.
Ogden
,
R.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
565
584
.
19.
Zhang
,
M.
, and
Mak
,
A. F.
, 1999, “
In Vivo Friction Properties of Human Skin
,”
Prosthet. Orthot. Int.
,
23
(
2
), pp.
135
141
. 0309-3646
20.
Fligner
,
C. L.
, and
Killeen
,
T. J.
, 1976, “
Distribution-Free Two-Sample Tests for Scale
,”
J. Am. Stat. Assoc.
0162-1459,
71
(
353
), pp.
210
213
.
21.
Mizrahi
,
J.
,
Maroudas
,
A.
,
Lanir
,
Y.
,
Ziv
,
I.
, and
Webber
,
T. J.
, 1986, “
The “Instantaneous” Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress
,”
Biorheology
0006-355X,
23
(
4
), pp.
311
330
.
22.
Wang
,
C. C.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
339
353
.
23.
Wu
,
J. Z.
,
Dong
,
R. G.
,
Smutz
,
W. P.
, and
Schopper
,
A. W.
, 2003, “
Nonlinear and Viscoelastic Characteristics of Skin Under Compression: Experiment and Analysis
,”
Biomed. Mater. Eng.
0959-2989,
13
(
4
), pp.
373
385
.
24.
Miller
,
K.
, 2005, “
Method of Testing Very Soft Biological Tissues in Compression
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
153
158
.
25.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1990, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
2
), pp.
138
146
.
26.
Wu
,
J. Z.
,
Dong
,
R. G.
, and
Schopper
,
A. W.
, 2004, “
Analysis of Effects of Friction on the Deformation Behavior of Soft Tissues in Unconfined Compression Tests
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
147
155
.
27.
Morriss
,
L.
,
Wittek
,
A.
, and
Miller
,
K.
, 2008, “
Compression Testing of Very Soft Biological Tissues Using Semi-Confined Configuration—A Word of Caution
,”
J. Biomech.
0021-9290,
41
(
1
), pp.
235
238
.
28.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
244
252
.
29.
Wu
,
J. Z.
,
Dong
,
R. G.
, and
Smutz
,
W. P.
, 2004, “
Elimination of the Friction Effects in Unconfined Compression Tests of Biomaterials and Soft Tissues
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
(
1
), pp.
35
40
.
You do not currently have access to this content.