Inertial motion sensors (IMSs) combine three sensors to produce a reportedly stable and accurate orientation estimate in three dimensions. Although accuracy has been reported within the range of 2 deg of error by manufacturers, the sensors are rarely tested in the challenging motion present in human motion. Their accuracy was tested in static, quasistatic, and dynamic situations against gold-standard Vicon camera data. It was found that static and quasistatic rms error was even less than manufacturers’ technical specifications. Quasistatic rms error was minimal at 0.3 deg (±0.15deg SD) on the roll axis, 0.29 deg (±0.20deg SD) on the pitch axis, and 0.73 deg (±0.81deg SD) on the yaw axis. The dynamic rms error was between 1.9 deg and 3.5 deg on the main axes of motion but it increased considerably on off-axis during planar pendulum motion. Complex arm motion in the forward reaching plane proved to be a greater challenge for the sensors to track but results are arguably better than previously reported studies considering the large range of motion used.

1.
Luinge
,
H. J.
,
Veltink
,
P. H.
, and
Baten
,
C. T.
, 1999, “
Estimating Orientation With Gyroscopes and Accelerometers
,”
Technol. Health Care
0928-7329,
7
, pp.
455
459
.
2.
Luinge
,
H. J.
, and
Veltink
,
P. H.
, 2004, “
Inclination Measurement of Human Movement Using a 3-D Accelerometer With Autocalibration
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
, pp.
112
121
.
3.
Aminian
,
K.
, and
Najafi
,
B.
, 2004, “
Capturing Human Motion Using Body-Fixed Sensors: Outdoor Measurement and Technical Applications
,”
Computer Animation and Virtual Worlds
,
15
, pp.
79
94
. 1546-4261
4.
Kemp
,
B.
,
Janssen
,
A. J. M. W.
, and
van der Kamp
,
B.
, 1998, “
Body Position Can Be Measured in 3D Using Miniature Accelerometers and Earth-Magnetic Field Sensors
,”
Electroencephalogr. Clin. Neurophysiol.
0013-4649,
109
, pp.
484
488
.
5.
Roetenberg
,
D.
,
Luinge
,
H. J.
,
Baten
,
C. T.
, and
Veltink
,
P. H.
, 2005, “
Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
13
, pp.
395
405
.
6.
Luinge
,
H. J.
, and
Veltink
,
P. H.
, 2005, “
Measuring Orientation of Human Body Segments Using Miniature Gyroscopes and Accelerometers
,”
Med. Biol. Eng. Comput.
0140-0118,
43
, pp.
273
282
.
7.
Bachmann
,
E.
,
McGhee
,
R.
,
Yun
,
X.
, and
Zyda
,
M.
, 2003, “
Sourceless Tracking of Human Posture Using Inertial and Magnetic Sensors
,”
IEEE Comput. Graphics Appl.
0272-1716,
2
, pp.
822
829
.
8.
Zhu
,
R.
, and
Zhou
,
X.
, 2004, “
A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
, pp.
295
302
.
9.
Roetenberg
,
D.
,
Buurke
,
J. H.
,
Veltink
,
P. H.
,
Forner
,
C. A.
, and
Hermens
,
H. J.
, 2003, “
Surface Electromyography Analysis for Variable Gait
,”
Gait and Posture
0966-6362,
18
, pp.
109
117
.
10.
Brodie
,
M. A.
,
Walmsley
,
A.
, and
Page
,
W.
, 2008, “
Dynamic Accuracy of Inertial Measurement Units During Simple Pendulum Motion
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
11
, pp.
235
242
.
11.
Luinge
,
H. J.
,
Veltink
,
P. H.
, and
Baten
,
C. T.
, 2007, “
Ambulatory Measurement of Arm Orientation
,”
J. Biomech.
0021-9290,
40
, pp.
78
85
.
12.
Pfau
,
T.
,
Witte
,
T.
, and
Wilson
,
A. M.
, 2005, “
A Method for Deriving Displacement Data During Cyclical Movement Using an Inertial Sensor
,”
J. Exp. Biol.
0022-0949,
208
, pp.
2503
2514
.
13.
Picerno
,
P.
,
Cereatti
,
A.
, and
Cappozzo
,
A.
, 2008, “
Joint Kinematics Estimate Using Wearable Inertial and Magnetic Sensing Modules
,”
Gait and Posture
0966-6362,
28
, pp.
588
595
.
14.
Cappozzo
,
A.
,
Della Croce
,
U.
,
Leardini
,
A.
, and
Chiari
,
L.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry Part 1: Theoretical Background
,”
Gait and Posture
0966-6362,
21
, pp.
186
196
.
15.
Tupling
,
S. J.
, and
Pierrynowski
,
M. R.
, 1987, “
Use of Cardan Angles to Locate Rigid Bodies in Three-Dimensional Space
,”
Med. Biol. Eng. Comput.
0140-0118,
25
(
5
), pp.
527
537
.
16.
Zhou
,
H.
, and
Hu
,
H.
, 2007, “
Upper Limb Motion Estimation From Inertial Measurements
,”
J. Inf. Technol.
0268-3962,
13
(
1
), pp.
1
14
.
17.
Zhou
,
H.
,
Hu
,
H.
, and
Tao
,
Y.
, 2006, “
Inertial Measurements of Upper Limb Motion
,”
Med. Biol. Eng. Comput.
0140-0118,
44
, pp.
479
487
.
18.
O’Donovan
,
K. J.
,
Kamnik
,
R.
,
O’Keeffe
,
D. T.
, and
Lyons
,
G. M.
, 2007, “
An Inertial and Magnetic Sensor Based Technique for Joint Angle Measurement
,”
J. Biomech.
0021-9290,
40
, pp.
2604
2611
.
19.
Favre
,
J.
,
Jolles
,
B. M.
,
Aissaoui
,
R.
, and
Aminian
,
K.
, 2008, “
Ambulatory Measurement of 3D Knee Joint Angle
,”
J. Biomech.
0021-9290,
41
, pp.
1029
1035
.
20.
Rachid
,
A.
,
Guillaume
,
D.
, and
Patrick
,
B.
, 2008, “
Shoulder Joint Moment Estimation During Manual Wheelchair Propulsion Using Inertial Motion Trackers
,”
Proceedings of the 10th International Symposium on 3D Analysis of Human Movement
, Santpoort, The Netherlands.
You do not currently have access to this content.