The identification of anisotropic elastic properties of lamellar bone based on nanoindentation data is an open problem. Therefore, the purpose of this study was to develop a method to estimate the orthotropic elastic constants of human cortical bone secondary osteons using nanoindentation in two orthogonal directions. Since the indentation modulus depends on all elastic constants and, for anisotropic materials, also on the indentation direction, a theoretical model quantifying the indentation modulus from the stiffness tensor of a given material was implemented numerically (Swadener and Pharr, 2001, “Indentation of Elastically Anisotropic Half-Spaces by Cones and Parabolae of Revolution,” Philos. Mag. A, 81(2), pp. 447–466). Nanoindentation was performed on 22 osteons of the distal femoral shaft: A new holding system was designed in order to indent the same osteon in two orthogonal directions. To interpret the experimental results and identify orthotropic elastic constants, an inverse procedure was developed by using a fabric-based elastic model for lamellar bone. The experimental indentation moduli were found to vary with the indentation direction and showed a marked anisotropy. The estimated elastic constants showed different degrees of anisotropy among secondary osteons of the same bone and these degrees of anisotropy were also found to be different than the one of cortical bone at the macroscopic level. Using the log-Euclidean norm, the relative distance between the compliance tensors of the estimated mean osteon and of cortical bone at the macroscopic level was 9.69%: Secondary osteons appeared stiffer in their axial and circumferential material directions, and with a greater bulk modulus than cortical bone, which is attributed to the absence of vascular porosity in osteonal properties. The proposed method is suitable for identification of elastic constants from nanoindentation experiments and could be adapted to other (bio)materials, for which it is possible to describe elastic properties using a fabric-based model.

1.
Cowin
,
S. C.
, 2001,
Bone Mechanics Handbook
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Hoc
,
T.
,
Henry
,
L.
,
Verdier
,
M.
,
Aubry
,
D.
,
Sedel
,
L.
, and
Meunier
,
A.
, 2006, “
Effect of Microstructure on the Mechanical Properties of Haversian Cortical Bone
,”
Bone (N.Y.)
8756-3282,
38
, pp.
466
474
.
3.
Rho
,
J.
,
Roy
,
M. E.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
0021-9304,
45
, pp.
48
54
.
4.
Rho
,
J.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1997, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
0142-9612,
18
, pp.
1325
1330
.
5.
Roy
,
M. E.
,
Rho
,
J.
,
Tsui
,
T. Y.
,
Evans
,
N. D.
, and
Pharr
,
G. M.
, 1999, “
Mechanical and Morphological Variation of the Human Lumbar Vertebral Cortical and Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
44
, pp.
191
197
.
6.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
, 1999, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
0021-9290,
32
, pp.
1005
1012
.
7.
Ascenzi
,
M. G.
,
Ascenzi
,
A.
,
Benvenuti
,
A.
,
Burghammer
,
M.
,
Panzavolta
,
S.
, and
Bigi
,
A.
, 2003, “
Structural Differences Between “Dark” and “Bright” Isolated Human Osteonic Lamellae
,”
J. Struct. Biol.
1047-8477,
141
, pp.
22
33
.
8.
Ascenzi
,
M. G.
, and
Lomovtsev
,
A.
, 2006, “
Collagen Orientation Patterns in Human Secondary Osteons, Quantified in the Radial Direction by Confocal Microscopy
,”
J. Struct. Biol.
1047-8477,
153
, pp.
14
30
.
9.
Swadener
,
J. G.
,
Rho
,
J.
, and
Pharr
,
G. M.
, 2001, “
Effects of Anisotropy on Elastic Moduli Measured by Nanoindentation in Human Tibial Cortical Bone
,”
J. Biomed. Mater. Res.
0021-9304,
57A
, pp.
108
112
.
10.
Hengsberger
,
S.
,
Enstroem
,
J.
,
Peyrin
,
F.
, and
Zysset
,
P. K.
, 2003, “
How is the Indentation Modulus of Bone Tissue Related to Its Macroscopic Elastic Response? A Validation Study
,”
J. Biomech.
0021-9290,
36
, pp.
1503
1509
.
11.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
, 2006, “
Nanoindentation of Biological Materials
,”
Nanotoday
1748-0132,
1
(
3
), pp.
26
33
.
12.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results From Two Microscopic Measurements Techniques
,”
J. Biomech.
0021-9290,
32
, pp.
437
441
.
13.
Hengsberger
,
S.
,
Boivin
,
G.
, and
Zysset
,
P. K.
, 2002, “
Morphological and Mechanical Properties of Bone Structural Units: A Two-Case Study
,”
JSME Int. J., Ser. C
1340-8062,
45
(
4
), pp.
936
943
.
14.
Rho
,
J.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 1999, “
Variations in the Individual Thick Lamellar Properties Within Osteons by Nanoindentation
,”
Bone (N.Y.)
8756-3282,
25
(
3
), pp.
295
300
.
15.
Rho
,
J.
,
Currey
,
J. D.
,
Zioupos
,
P.
, and
Pharr
,
G. M.
, 2001, “
The Anisotropic Young’s Modulus of Equine Secondary Osteones and Interstitial Bone Determined by Nanoindentation
,”
J. Exp. Biol.
0022-0949,
204
, pp.
1775
1781
.
16.
Rho
,
J.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 2002, “
Microstructural Elasticity and Regional Heterogeneity in Human Femoral Bone of Various Ages Examined by Nano-Indentation
,”
J. Biomech.
0021-9290,
35
, pp.
189
198
.
17.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P. K.
, 2001, “
A Combined Atomic Force Microscopy and Nanoindentation Technique to Investigate the Elastic Properties of Bone Structural Units
,”
Eur. Cells Mater
1473-2262,
1
, pp.
12
17
.
18.
Xu
,
J.
,
Rho
,
J.
,
Mishra
,
S. R.
, and
Fan
,
Z.
, 2003, “
Atomic Force Microscopy and Nanoindentation Characterization of Human Lamellar Bone Prepared by Microtome Sectioning and Mechanical Polishing Technique
,”
J. Biomed. Mater. Res.
0021-9304,
67A
, pp.
719
726
.
19.
Rho
,
J.
, and
Pharr
,
G. M.
, 1999, “
Effects of Drying on the Mechanical Properties of Bovine Femur Measured by Nanoindentation
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
10
, pp.
485
488
.
20.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P. K.
, 2002, “
Nanoindentation Discriminates the Elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Conditions
,”
Bone (N.Y.)
8756-3282,
30
(
1
), pp.
178
184
.
21.
Hoffler
,
C. E.
,
Guo
,
X. E.
,
Zysset
,
P. K.
, and
Goldstein
,
S. A.
, 2005, “
An Application of Nanoindentation Technique to Measure Bone Tissue Lamellae Properties
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1046
1053
.
22.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
, 2000, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone (N.Y.)
8756-3282,
26
(
6
), pp.
603
609
.
23.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
24.
Pharr
,
G. M.
, 1998, “
Measurements of Mechanical Properties by Ultra-Low Load Indentation
,”
Mater. Sci. Eng., A
0921-5093,
A253
, pp.
151
159
.
25.
Fan
,
Z.
,
Swadener
,
J. G.
,
Rho
,
J.
,
Roy
,
M. E.
, and
Pharr
,
G. M.
, 2002, “
Anisotropic Properties of Human Tibial Cortical Bone as Measured by Nanoindentation
,”
J. Orthop. Res.
0736-0266,
20
, pp.
806
810
.
26.
Hofmann
,
T.
,
Heyroth
,
F.
,
Meinhard
,
H.
,
Fränzel
,
W.
, and
Raum
,
K.
, 2006, “
Assessment of Composition and Anisotropic Elastic Properties of Secondary Osteon Lamellae
,”
J. Biomech.
0021-9290,
39
(
12
), pp.
2282
2294
.
27.
Swadener
,
J. G.
, and
Pharr
,
G. M.
, 2001, “
Indentation of Elastically Anisotropic Half-Spaces by Cones and Parabolae of Revolution
,”
Philos. Mag. A
0141-8610,
81
(
2
), pp.
447
466
.
28.
Vlassak
,
J. J.
,
Ciavarella
,
M.
,
Barber
,
J. R.
, and
Wang
,
X.
, 2003, “
The Indentation Modulus of Elastically Anisotropic Materials for Indenters of Arbitrary Shape
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1701
1721
.
29.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1975, “
Line Force Loadings on Anisotropic Half-Spaces and Wedges
,”
Phys. Norv.
0031-8930,
8
, pp.
13
22
.
30.
Lothe
,
J.
, and
Barnett
,
D. M.
, 1976, “
On the Existence of Surface-Wave Solutions for Anisotropic Elastic Half-Spaces With Free Surface
,”
J. Appl. Phys.
0021-8979,
47
, pp.
428
433
.
31.
Vlassak
,
J. J.
, and
Nix
,
W. D.
, 1993, “
Indentation Modulus of Elastically Anisotropic Half Spaces
,”
Philos. Mag. A
0141-8610,
A67
, pp.
1045
1056
.
32.
Wagermaier
,
W.
,
Gupta
,
H. S.
,
Gourrier
,
A.
,
Burghammer
,
M.
,
Roschger
,
P.
, and
Fratzl
,
P.
, 2006, “
Spiral Twisting of Fiber Orientation Inside Bone Lamellae
,”
BioInterphases
1559-4106,
1
(
1
), pp.
1
5
.
33.
Zysset
,
P. K.
, 2003, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
0021-9290,
36
, pp.
1469
1485
.
34.
Curnier
,
A.
,
He
,
Q. C.
, and
Zysset
,
P. K.
, 1995, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
, pp.
1
38
.
35.
Zysset
,
P. K.
, and
Curnier
,
A.
, 1995, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
0167-6636,
21
, pp.
243
250
.
36.
King
,
R. B.
, 1987, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1657
1664
.
37.
Larson
,
P. L.
,
Giannakopoulos
,
A. E.
,
Söderlund
,
E.
,
Rowcliffe
,
D. J.
, and
Vestergaard
,
R.
, 1996, “
Analysis of Berkovich Indentations
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
221
248
.
38.
Donnelly
,
E.
,
Baker
,
S. P.
,
Boskey
,
A. L.
, and
van der Meulen
,
M. C. H.
, 2006, “
Effects of Surface Roughness and Maximum Load on the Mechanical Properties of Cancellous Bone Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
0021-9304,
77A
, pp.
426
435
.
39.
Mittra
,
E.
,
Akella
,
S.
, and
Qin
,
Y.
, 2006, “
The Effects of Embedding Material, Loading Rate and Magnitude, and Penetration Depth in Nanoindentation of Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
79A
, pp.
86
93
.
40.
He
,
Q. C.
, and
Curnier
,
A.
, 1995, “
A More Fundamental Approach to Damaged Elastic Stress-Strain Relations
,”
Int. J. Solids Struct.
0020-7683,
32
(
10
), pp.
1433
1457
.
41.
Moakher
,
M.
, and
Norris
,
A. N.
, 2006, “
The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry
,”
J. Elast.
0374-3535,
85
, pp.
215
263
.
42.
Martin
,
R. B.
, and
Ishida
,
J.
, 1989, “
The Relative Effects of Collagen Fiber Orientation, Porosity, Density, and Mineralization on Bone Strength
,”
J. Biomech.
0021-9290,
22
(
5
), pp.
419
426
.
43.
Vlassak
,
J. J.
, and
Nix
,
W. D.
, 1994, “
Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments
,”
J. Mech. Phys. Solids
0022-5096,
42
(
8
), pp.
1223
1245
.
44.
Amprino
,
R.
, 1958, “
Investigations on Some Physical Properties of Bone Tissue
,”
Acta Anat. (Basel)
0001-5180,
34
, pp.
161
186
.
You do not currently have access to this content.