A number of recent studies have demonstrated the effectiveness of atomic force microscopy (AFM) for characterization of cellular stress-relaxation behavior. However, this technique’s recent development creates considerable need for exploration of appropriate mechanical models for analysis of the resultant data and of the roles of various cytoskeletal components responsible for governing stress-relaxation behavior. The viscoelastic properties of vascular smooth muscle cells (VSMCs) are of particular interest due to their role in the development of vascular diseases, including atherosclerosis and restenosis. Various cytoskeletal agents, including cytochalasin D, jasplakinolide, paclitaxel, and nocodazole, were used to alter the cytoskeletal architecture of the VSMCs. Stress-relaxation experiments were performed on the VSMCs using AFM. The quasilinear viscoelastic (QLV) reduced-relaxation function, as well as a simple power-law model, and the standard linear solid (SLS) model, were fitted to the resultant stress-relaxation data. Actin depolymerization via cytochalasin D resulted in significant increases in both rate of relaxation and percentage of relaxation; actin stabilization via jasplakinolide did not affect stress-relaxation behavior. Microtubule depolymerization via nocodazole resulted in nonsignificant increases in rate and percentage of relaxation, while microtubule stabilization via paclitaxel caused significant decreases in both rate and percentage of relaxation. Both the QLV reduced-relaxation function and the power-law model provided excellent fits to the data (R2=0.98), while the SLS model was less adequate (R2=0.91). Data from the current study indicate the important role of not only actin, but also microtubules, in governing VSMC viscoelastic behavior. Excellent fits to the data show potential for future use of both the QLV reduced-relaxation function and power-law models in conjunction with AFM stress-relaxation experiments.

1.
Ingber
,
D. E.
, 2003, “
Mechanobiology and Diseases of Mechanotransduction
,”
Ann. Med.
,
35
(
8
), pp.
564
77
. 0785-3890
2.
Li
,
C.
, and
Xu
,
Q.
, 2007, “
Mechanical Stress-Initiated Signal Transduction in Vascular Smooth Muscle Cells In Vitro and In Vivo
,”
Cell Signal
,
19
(
5
), pp.
881
91
. 0898-6568
3.
Suresh
,
S.
, 2007, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
38
. 1742-7061
4.
Lammi
,
M. J.
, 2004, “
Current Perspectives on Cartilage and Chondrocyte Mechanobiology
,”
Biorheology
,
41
(
3–4
), pp.
593
96
. 0006-355X
5.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
715
25
.
6.
Costa
,
K. D.
, 2003, “
Single-Cell Elastography: Probing for Disease With the Atomic Force Microscope
,”
Dis. Markers
,
19
(
2–3
), pp.
139
54
. 0278-0240
7.
Ohashi
,
T.
,
Ishii
,
Y.
,
Ishikawa
,
Y.
,
Matsumoto
,
T.
, and
Sato
,
M.
, 2002, “
Experimental and Numerical Analyses of Local Mechanical Properties Measured by Atomic Force Microscopy for Sheared Endothelial Cells
,”
Biomed. Mater. Eng.
0959-2989,
12
(
3
), pp.
319
27
.
8.
Collinsworth
,
A. M.
,
Zhang
,
S.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
, 2002, “
Apparent Elastic Modulus and Hysteresis of Skeletal Muscle Cells Throughout Differentiation
,”
Am. J. Physiol.: Cell Physiol.
,
283
(
4
), pp.
C1219
27
. 0363-6143
9.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
, 2006, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
91
. 0006-3495
10.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
, 2006, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
571
79
. 1063-4584
11.
Okajima
,
T.
,
Tanaka
,
M.
,
Tsukiyama
,
S.
,
Kadowaki
,
T.
,
Yamamoto
,
S.
,
Shimomura
,
M.
, and
Tokumoto
,
H.
, 2007, “
Stress-Relaxation of Hepg2 Cells Measured by Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
18
(
8
), p.
084010
.
12.
Smith
,
B. A.
,
Tolloczko
,
B.
,
Martin
,
J. G.
, and
Grutter
,
P.
, 2005, “
Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells With Atomic Force Microscopy: Stiffening Induced by Contractile Agonist
,”
Biophys. J.
0006-3495,
88
(
4
), pp.
2994
3007
.
13.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
, 2006, “
Mechanical Models for Living Cells–a Review
,”
J. Biomech.
0021-9290,
39
(
2
), pp.
195
216
.
14.
Vandijk
,
A. M.
,
Wieringa
,
P. A.
,
Van Der Meer
,
M.
, and
Laird
,
J. D.
, 1984, “
Mechanics of Resting Isolated Single Vascular Smooth Muscle Cells From Bovine Coronary Artery
,”
Am. J. Physiol.
,
246
(
3 Pt 1
), pp.
C277
87
. 0002-9513
15.
Nagayama
,
K.
,
Yanagihara
,
S.
, and
Matsumoto
,
T.
, 2007, “
A Novel Micro Tensile Tester With Feed-Back Control for Viscoelastic Analysis of Single Isolated Smooth Muscle Cells
,”
Med. Eng. Phys.
,
29
(
5
), pp.
620
28
. 1350-4533
16.
Takai
,
E.
,
Costa
,
K. D.
,
Shaheen
,
A.
,
Hung
,
C. T.
, and
Guo
,
X. E.
, 2005, “
Osteoblast Elastic Modulus Measured by Atomic Force Microscopy is Substrate Dependent
,”
Ann. Biomed. Eng.
0090-6964,
33
(
7
), pp.
963
71
.
17.
Rotsch
,
C.
, and
Radmacher
,
M.
, 2000, “
Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study
,”
Biophys. J.
,
78
(
1
), pp.
520
35
. 0006-3495
18.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
19.
Huang
,
H.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2004, “
Cell Mechanics and Mechanotransduction: Pathways, Probes, and Physiology
,”
Am. J. Physiol. Cell Physiol.
,
287
(
1
), pp.
C1
11
. 0363-6143
20.
Wong
,
P. K.
,
Tan
,
W.
, and
Ho
,
C. M.
, 2005, “
Cell Relaxation After Electrodeformation: Effect of Latrunculin A on Cytoskeletal Actin
,”
J. Biomech.
,
38
(
3
), pp.
529
35
. 0021-9290
21.
Laudadio
,
R. E.
,
Millet
,
E. J.
,
Fabry
,
B.
,
An
,
S. S.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 2005, “
Rat Airway Smooth Muscle Cell During Actin Modulation: Rheology and Glassy Dynamics
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
289
(
6
), pp.
C1388
95
.
22.
Tian
,
B.
,
Kiland
,
J. A.
, and
Kaufman
,
P. L.
, 2001, “
Effects of the Marine Macrolides Swinholide A and Jasplakinolide on Outflow Facility in Monkeys
,”
Invest. Ophthalmol. Visual Sci.
,
42
(
13
), pp.
3187
92
. 0146-0404
23.
Bubb
,
M. R.
,
Spector
,
I.
,
Beyer
,
B. B.
, and
Fosen
,
K. M.
, 2000, “
Effects of Jasplakinolide on the Kinetics of Actin Polymerization. An Explanation for Certain In Vivo Observations
,”
J. Biol. Chem.
,
275
(
7
), pp.
5163
70
. 0021-9258
24.
Stamenovic
,
D.
, 2005, “
Microtubules May Harden or Soften Cells, Depending of the Extent of Cell Distension
,”
J. Biomech.
0021-9290,
38
(
8
), pp.
1728
32
.
25.
Wu
,
H. W.
,
Kuhn
,
T.
, and
Moy
,
V. T.
, 1998, “
Mechanical Properties of L929 Cells Measured by Atomic Force Microscopy: Effects of Anticytoskeletal Drugs and Membrane Crosslinking
,”
Scanning
,
20
(
5
), pp.
389
97
. 0161-0457
26.
Stamenovic
,
D.
,
Liang
,
Z.
,
Chen
,
J.
, and
Wang
,
N.
, 2002, “
Effect of the Cytoskeletal Prestress on the Mechanical Impedance of Cultured Airway Smooth Muscle Cells
,”
J. Appl. Physiol.
,
92
(
4
), pp.
1443
50
. 0021-8987
27.
Wang
,
N.
, 1998, “
Mechanical Interactions Among Cytoskeletal Filaments
,”
Hypertension
,
32
(
1
), pp.
162
5
. 0194-911X
28.
Enomoto
,
T.
, 1996, “
Microtubule Disruption Induces the Formation of Actin Stress Fibers and Focal Adhesions in Cultured Cells: Possible Involvement of the Rho Signal Cascade
,”
Cell Struct. Funct.
,
21
(
5
), pp.
317
26
. 0386-7196
29.
Stamenovic
,
D.
, 2005, “
Effects of Cytoskeletal Prestress on Cell Rheological Behavior
,”
Acta Biomater.
,
1
(
3
), pp.
255
62
. 1742-7061
30.
Nishimura
,
S.
,
Nagai
,
S.
,
Katoh
,
M.
,
Yamashita
,
H.
,
Saeki
,
Y.
,
Okada
,
J.
,
Hisada
,
T.
,
Nagai
,
R.
, and
Sugiura
,
S.
, 2005, “
Microtubules Modulate the Stiffness of Cardiomyocytes Against Shear Stress
,”
Circ. Res.
,
98
(
1
), pp.
81
7
. 0009-7330
31.
Tagawa
,
H.
,
Wang
,
N.
,
Narishige
,
T.
,
Ingber
,
D. E.
,
Zile
,
M. R.
, and
Cooper
,
G. T.
, 1997, “
Cytoskeletal Mechanics in Pressure-Overload Cardiac Hypertrophy
,”
Circ. Res.
,
80
(
2
), pp.
281
89
. 0009-7330
32.
Yamamoto
,
S.
,
Tsutsui
,
H.
,
Takahashi
,
M.
,
Ishibashi
,
Y.
,
Tagawa
,
H.
,
Imanaka-Yoshida
,
K.
,
Saeki
,
Y.
, and
Takeshita
,
A.
, 1998, “
Role of Microtubules in the Viscoelastic Properties of Isolated Cardiac Muscle
,”
J. Mol. Cell. Cardiol.
,
30
(
9
), pp.
1841
53
. 0022-2828
33.
Kikumoto
,
M.
,
Kurachi
,
M.
,
Tosa
,
V.
, and
Tashiro
,
H.
, 2005, “
Flexural Rigidity of Individual Microtubules Measured by a Buckling Force With Optical Traps
,”
Biophys. J.
0006-3495,
90
(
5
), pp.
1687
96
.
34.
Felgner
,
H.
,
Frank
,
R.
, and
Schliwa
,
M.
, 1996, “
Flexural Rigidity of Microtubules Measured With the Use of Optical Tweezers
,”
J. Cell. Sci.
,
109
(
2
), pp.
509
16
. 0022-2828
35.
Jordan
,
M. A.
,
Toso
,
R. J.
,
Thrower
,
D.
, and
Wilson
,
L.
, 1993, “
Mechanism of Mitotic Block and Inhibition of Cell Proliferation by Taxol at Low Concentrations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
90
(
20
), pp.
9552
56
. 0027-8424
36.
Dye
,
R. B.
,
Fink
,
S. P.
, and
Williams
,
R. C.
, Jr.
, 1993, “
Taxol-Induced Flexibility of Microtubules and its Reversal by Map-2 and Tau
,”
J. Biol. Chem.
,
268
(
10
), pp.
6847
50
. 0021-9258
37.
Ostlund
,
R. E.
, Jr.
,
Leung
,
J. T.
, and
Hajek
,
S. V.
, 1980, “
Regulation of Microtubule Assembly in Cultured Fibroblasts
,”
J. Cell Biol.
,
85
(
2
), pp.
386
91
. 0021-9525
38.
Grazi
,
E.
, and
Trombetta
,
G.
, 1985, “
Effects of Temperature on Actin Polymerized by Ca2+. Direct Evidence of Fragmentation
,”
Biochem. J.
,
232
(
1
), pp.
297
300
. 0264-6021
39.
Stefanovich
,
P.
,
Ezzell
,
R. M.
,
Sheehan
,
S. J.
,
Tompkins
,
R. G.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1995, “
Effects of Hypothermia on the Function, Membrane Integrity, and Cytoskeletal Structure of Hepatocytes
,”
Cryobiology
,
32
(
4
), pp.
389
403
. 0011-2240
40.
Kis
,
A.
,
Kasas
,
S.
,
Babic
,
B.
,
Kulik
,
A. J.
,
Benoit
,
W.
,
Briggs
,
G. A.
,
Schonenberger
,
C.
,
Catsicas
,
S.
, and
Forro
,
L.
, 2002, “
Nanomechanics of Microtubules
,”
Phys. Rev. Lett.
0031-9007,
89
(
24
), p.
248101
.
41.
Niranjan
,
P. S.
,
Forbes
,
J. G.
,
Greer
,
S. C.
,
Dudowicz
,
J.
,
Freed
,
K. F.
, and
Douglas
,
J. F.
, 2001, “
Thermodynamic Regulation of Actin Polymerization
,”
J. Chem. Phys.
0021-9606,
114
(
24
), pp.
10573
6
.
42.
Petersen
,
N. O.
,
Mcconnaughey
,
W. B.
, and
Elson
,
E. L.
, 1982, “
Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
79
(
17
), pp.
5327
31
.
43.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
, 1974, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
J. Biomech.
0021-9290,
7
(
4
), pp.
357
70
.
44.
Doehring
,
T. C.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2004, “
The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach
,”
Ann. Biomed. Eng.
0090-6964,
32
(
2
), pp.
223
32
.
45.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
, 2002, “
Quasi-Linear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1411
15
.
46.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
(
10
), pp.
908
14
.
47.
Guo
,
D. C.
,
Papke
,
C. L.
,
He
,
R.
, and
Milewicz
,
D. M.
, 2006, “
Pathogenesis of Thoracic and Abdominal Aortic Aneurysms
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
339
52
. 0077-8923
48.
Doehring
,
T. C.
,
Freed
,
A. D.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2005, “
Fractional Order Viscoelasticity of the Aortic Valve Cusp: An Alternative to Quasilinear Viscoelasticity
,”
J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
700
8
.
49.
Bursac
,
P.
,
Lenormand
,
G.
,
Fabry
,
B.
,
Oliver
,
M.
,
Weitz
,
D. A.
,
Viasnoff
,
V.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 2005, “
Cytoskeletal Remodelling and Slow Dynamics in the Living Cell
,”
Nature Mater.
1476-1122,
4
(
7
), pp.
557
61
.
50.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
, 2004, “
Creep Function of a Single Living Cell
,”
Biophys. J.
0006-3495,
88
(
3
), pp.
2224
33
.
51.
Stamenovic
,
D.
,
Suki
,
B.
,
Fabry
,
B.
,
Wang
,
N.
, and
Fredberg
,
J. J.
, 2004, “
Rheology of Airway Smooth Muscle Cells is Associated With Cytoskeletal Contractile Stress
,”
J. Appl. Physiol.
8750-7587,
96
(
5
), pp.
1600
1605
.
52.
Deng
,
L. H.
,
Trepat
,
X.
,
Butler
,
J. P.
,
Millet
,
E.
,
Morgan
,
K. G.
,
Weitz
,
D. A.
, and
Fredberg
,
J. J.
, 2006, “
Fast and Slow Dynamics of the Cytoskeleton
,”
Nature Mater.
1476-1122,
5
(
8
), pp.
636
640
.
53.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
,
Taback
,
N. A.
,
Millet
,
E. J.
, and
Fredberg
,
J. J.
, 2003, “
Time Scale and Other Invariants of Integrative Mechanical Behavior in Living Cells
,”
Phys. Rev. E
1063-651X,
68
(
4
), p.
041914
.
54.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
334
341
.
55.
Lundkvist
,
A.
,
Lilleoden
,
E.
,
Sickhaus
,
W.
,
Kinney
,
J.
,
Pruitt
,
L.
, and
Balooch
,
M.
, 1998, “
Viscoelastic Properties of Healthy Human Artery Measured in Saline Solution by AFM Based Indentation Technique
,”
Thin Films: Stresses and Mechanical Properties VI
, Vol.
436
,
W. W.
Gerberich
,
H.
Gao
,
J. E.
Sundgren
, and
S. P.
Baker
, eds.,
Materials Research Society
,
Boston, MA
, pp.
353
358
.
56.
Nagatomi
,
J.
,
Toosi
,
K. K.
,
Chancellor
,
M. B.
, and
Sacks
,
M. S.
, 2008, “
Contribution of the Extracellular Matrix to the Viscoelastic Behavior of the Urinary Bladder Wall
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
395
404
. 1617-7959
You do not currently have access to this content.