Direct tissue infusion, e.g., convection-enhanced delivery (CED), is a promising local delivery technique for treating diseases of the central nervous system. Predictive models of spatial drug distribution during and following direct tissue infusion are necessary for treatment optimization and planning of surgery. In this study, a 3D interstitial transport modeling approach in which tissue properties and anatomical boundaries are assigned on a voxel-by-voxel basis using tissue alignment data from diffusion tensor imaging (DTI) is presented. The modeling approach is semi-automatic and utilizes porous media transport theory to estimate interstitial transport in isotropic and anisotropic tissue regions. Rat spinal cord studies compared predicted distributions of albumin tracer (for varying DTI resolution) following infusion into the dorsal horn with tracer distributions measured by Wood et al. in a previous study. Tissue distribution volumes compared favorably for small infusion volumes (<4μl). The presented DTI-based methodology provides a rapid means of estimating interstitial flows and tracer distributions following CED into the spinal cord. Quantification of these transport fields provides an important step toward development of drug-specific transport models of infusion.

1.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
E. H.
, 1994, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
6
), pp.
2076
2080
.
2.
Lonser
,
R. R.
,
Walbridge
,
S.
,
Butman
,
J. A.
,
Walters
,
H. A.
,
Garmestani
,
K.
,
Vortmeyer
,
A. O.
,
Brechbiel
,
M. W.
, and
Oldfield
,
E. H.
, 2002, “
Successful Safe Perfusion of the Primate Brainstem With a Macromolecule: In Vivo Magnetic Resonance Imaging of Macromolecular Distribution During Infusion
,”
J. Neurosurg.
0022-3085,
97
(
4
), pp.
905
913
.
3.
Wood
,
J. D.
,
Lonser
,
R. R.
,
Gogate
,
N.
,
Morrison
,
P. F.
, and
Oldfield
,
E. H.
, 1999, “
Convective Delivery of Macromolecules Into the Naive and Traumatized Spinal Cords of Rats
,”
J. Neurosurg.
0022-3085,
90
(
1
), pp.
115
120
.
4.
Morrison
,
P. F.
,
Laske
,
D. W.
,
Bobo
,
H.
,
Oldfield
,
E. H.
, and
Dedrick
,
R. L.
, 1994, “
High-Flow Microinfusion—Tissue Penetration and Pharmacodynamics
,”
Am. J. Physiol.
0002-9513,
266
(
1
), pp.
R292
R305
.
5.
Kalyanasundaram
,
S.
,
Calhoun
,
V. D.
, and
Leong
,
K. W.
, 1997, “
A Finite Element Model for Predicting the Distribution of Drugs Delivered Intracranially to the Brain
,”
Am. J. Physiol. Regulatory Integrative Comp. Physiol.
0363-6119,
42
(
5
), pp.
R1810
R1821
.
6.
Barry
,
S. I.
, and
Aldis
,
G. K.
, 1992, “
Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues
,”
Bull. Math. Biol.
0092-8240,
54
(
6
), pp.
977
997
.
7.
Basser
,
P. J.
, 1992, “
Interstitial Pressure, Volume, and Flow During Infusion Into Brain-Tissue
,”
Microvasc. Res.
0026-2862,
44
(
2
), pp.
143
165
.
8.
Chen
,
Z. J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
, 2002, “
Intraparenchymal Drug Delivery via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
(
2
), pp.
85
96
.
9.
Morrison
,
P. F.
,
Chen
,
M. Y.
,
Chadwick
,
R. S.
,
Lonser
,
R. R.
, and
Oldfield
,
E. H.
, 1999, “
Focal Delivery During Direct Infusion to Brain: Role of Flow Rate, Catheter Diameter, and Tissue Mechanics
,”
Am. J. Physiol. Regulatory Integrative Comp. Physiol.
0363-6119,
277
(
4
), pp.
R1218
R1229
.
10.
Neeves
,
K. B.
,
Lo
,
C. T.
,
Foley
,
C. P.
,
Saltzman
,
W. M.
, and
Olbricht
,
W. L.
, 2006, “
Fabrication and Characterization of Microfluidic Probes for Convection Enhanced Drug Delivery
,”
J. Controlled Release
0168-3659,
111
(
3
), pp.
252
262
.
11.
Netti
,
P. A.
,
Travascio
,
F.
, and
Jain
,
R. K.
, 2003, “
Coupled Macromolecular Transport and Gel Mechanics: Poroviscoelastic Approach
,”
AIChE J.
0001-1541,
49
(
6
), pp.
1580
1596
.
12.
Smith
,
J. H.
, and
Humphrey
,
J. A. C.
, 2007, “
Interstitial Transport and Transvascular Fluid Exchange During Infusion Into Brain and Tumor Tissue
,”
Microvasc. Res.
0026-2862,
73
(
1
), pp.
58
73
.
13.
Lonser
,
R. R.
,
Gogate
,
N.
,
Morrison
,
P. F.
,
Wood
,
J. D.
, and
Oldfield
,
E. H.
, 1998, “
Direct Convective Delivery of Macromolecules to the Spinal Cord
,”
J. Neurosurg.
0022-3085,
89
(
4
), pp.
616
622
.
14.
Prokopova
,
S.
,
Vargova
,
L.
, and
Sykova
,
E.
, 1997, “
Heterogeneous and Anisotropic Diffusion in the Developing Rat Spinal Cord
,”
NeuroReport
0959-4965,
8
(
16
), pp.
3527
3532
.
15.
Reulen
,
H. J.
,
Graham
,
R.
,
Spatz
,
M.
, and
Klatzo
,
I.
, 1977, “
Role of Pressure-Gradients and Bulk Flow in Dynamics of Vasogenic Brain Edema
,”
J. Neurosurg.
0022-3085,
46
(
1
), pp.
24
35
.
16.
Sarntinoranont
,
M.
,
Banerjee
,
R. K.
,
Lonser
,
R. R.
, and
Morrison
,
P. F.
, 2003, “
A Computational Model of Direct Interstitial Infusion of Macromolecules Into the Spinal Cord
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
448
461
.
17.
Mori
,
S.
, 2007,
Introduction to Diffusion Tensor Imaging
,
Elsevier
,
New York
.
18.
Basser
,
P. J.
, and
Jones
,
D. K.
, 2002, “
Diffusion-Tensor MRI: Theory, Experimental Design and Data Analysis—A Technical Review
,”
NMR Biomed.
0952-3480,
15
(
7–8
), pp.
456
467
.
19.
Basser
,
P. J.
,
Mattiello
,
J.
, and
Lebihan
,
D.
, 1994, “
MR Diffusion Tensor Spectroscopy and Imaging
,”
Biophys. J.
0006-3495,
66
(
1
), pp.
259
267
.
20.
Conturo
,
T. E.
,
Lori
,
N. F.
,
Cull
,
T. S.
,
Akbudak
,
E.
,
Snyder
,
A. Z.
,
Shimony
,
J. S.
,
Mckinstry
,
R. C.
,
Burton
,
H.
, and
Raichle
,
M. E.
, 1999, “
Tracking Neuronal Fiber Pathways in the Living Human Brain
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
18
), pp.
10422
10427
.
21.
Mori
,
S.
,
Kaufmann
,
W. E.
,
Pearlson
,
G. D.
,
Crain
,
B. J.
,
Stieltjes
,
B.
,
Solaiyappan
,
M.
, and
Van Zijl
,
P. C. M.
, 2000, “
In Vivo Visualization of Human Neural Pathways by Magnetic Resonance Imaging
,”
Ann. Neurol.
0364-5134,
47
(
3
), pp.
412
414
.
22.
Poupon
,
C.
,
Mangin
,
J. F.
,
Clark
,
C. A.
,
Frouin
,
V.
,
Regis
,
J.
,
Le Bihan
,
D.
, and
Bloch
,
I.
, 2001, “
Towards Inference of Human Brain Connectivity From MR Diffusion Tensor Data
,”
Med. Image Anal.
1361-8415,
5
(
1
), pp.
1
15
.
23.
Sarntinoranont
,
M.
,
Chen
,
X. M.
,
Zhao
,
J. B.
, and
Mareci
,
T. H.
, 2006, “
Computational Model of Interstitial Transport in the Spinal Cord Using Diffusion Tensor Imaging
,”
Ann. Biomed. Eng.
0090-6964,
34
(
8
), pp.
1304
1321
.
24.
Sarntinoranont
,
M.
,
Iadarola
,
M. J.
,
Lonser
,
R. R.
, and
Morrison
,
P. F.
, 2003, “
Direct Interstitial Infusion of Nk1-Targeted Neurotoxin Into the Spinal Cord: A Computational Model
,”
Am. J. Physiol. Regulatory Integrative Comp. Physiol.
0363-6119,
285
(
1
), pp.
R243
R254
.
25.
Inglis
,
B. A.
,
Bossart
,
E. L.
,
Buckley
,
D. L.
,
Wirth
,
E. D.
, and
Mareci
,
T. H.
, 2001, “
Visualization of Neural Tissue Water Compartments Using Biexponential Diffusion Tensor MRI
,”
Magn. Reson. Med.
0740-3194,
45
(
4
), pp.
580
587
.
26.
Narayana
,
P.
,
Fenyes
,
D.
, and
Zacharopoulos
,
N.
, 1999, “
In Vivo Relaxation Times of Gray Matter and White Matter in Spinal Cord
,”
Magn. Reson. Imaging
0730-725X,
17
(
4
), pp.
623
626
.
27.
Peter
,
L.
, and
Williams
,
R. W.
, 1980,
Gray’s Anatomy
,
W. B. Saunders
,
Philadelphia, PA
.
28.
George
,
A.
,
Truskey
,
F. Y.
, and
Katz
,
D. F.
, 2004,
Transport Phenomena in Biological Systems
,
Pearson Prentice-Hall
,
Upper Saddle River, NJ
.
29.
Tuch
,
D. S.
,
Wedeen
,
V. J.
,
Dale
,
A. M.
,
George
,
J. S.
, and
Belliveau
,
J. W.
, 2001, “
Conductivity Tensor Mapping of the Human Brain Using Diffusion Tensor MRI
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
20
), pp.
11697
11701
.
30.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Mekarski
,
M.
, and
Zhang
,
L. B.
, 2008, “
Prediction of Convection-Enhanced Drug Delivery to the Human Brain
,”
J. Theor. Biol.
0022-5193,
250
(
1
), pp.
125
138
.
31.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Erickson
,
T.
,
Guo
,
X. D.
, and
Penn
,
R. D.
, 2008, “
Computational Methods for Predicting Drug Transport in Anisotropic and Heterogeneous Brain Tissue
,”
J. Biomech.
0021-9290,
41
(
10
), pp.
2176
2187
.
32.
Bastin
,
M. E.
,
Armitage
,
P. A.
, and
Marshall
,
I.
, 1998, “
A Theoretical Study of the Effect of Experimental Noise on the Measurement of Anisotropy in Diffusion Imaging
,”
Magn. Reson. Imaging
0730-725X,
16
(
7
), pp.
773
785
.
33.
Chen
,
X. M.
,
Dunn
,
A. C.
,
Sawyer
,
W. G.
, and
Sarntinoranont
,
M.
, 2007, “
A Biphasic Model for Micro-Indentation of a Hydrogel-Based Contact Lens
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
156
163
.
34.
Tao
,
L.
, and
Nicholson
,
C.
, 1996, “
Diffusion of Albumins in Rat Cortical Slices and Relevance to Volume Transmission
,”
Neuroscience
0306-4522,
75
(
3
), pp.
839
847
.
You do not currently have access to this content.