Atherosclerosis is consistently found in bifurcations and curved segments of the circulatory system, indicating disturbed hemodynamics may participate in disease development. In vivo and in vitro studies have shown that endothelial cells (ECs) alter their gene expression in response to their hemodynamic environment, in a manner that is highly dependent on the exact nature of the applied forces. This research exposes cultured ECs to flow patterns present in the coronary arterial network, in order to determine the role of hemodynamic forces in plaque initiation. Vascular cell adhesion molecule-1 (VCAM-1) was examined as an indicator of plaque growth, as it participates in monocyte adhesion, which is one of the initial steps in the formation of fatty lesions. The hemodynamics of a healthy right and left coronary artery were determined by reconstructing 3D models from cineangiograms and employing computational fluid dynamic models to establish physiological coronary flow patterns. Wall shear stress (WSS) profiles selected from these studies were applied to ECs in a cone and plate bioreactor. The cone and plate system was specifically designed to be capable of reproducing the high frequency harmonics present in physiological waveforms. The shear stresses chosen represent those from regions prone to disease development and healthier arterial segments. The levels of the transcriptional and cell surface anchored VCAM-1 were quantified by flow cytometry and real time RT-PCR over a number of timepoints to obtain a complete picture of the relationship between this adhesion molecule and the applied shear stress. The WSS profiles from regions consistently displaying a higher incidence of plaques in vivo, induced greater levels of VCAM-1, particularly at the earlier timepoints. Conversely, the WSS profile from a straight section of vessel with undisturbed flow indicated no upregulation in VCAM-1 and a significant downregulation after 24 h, when compared with static controls. Low shear stress from the outer wall of a bifurcation induced four times the levels of VCAM-1 messenger ribonucleic acid (mRNA) after four hours when compared with levels of mRNA induced by WSS from a straight arterial section. This shear profile also induced prolonged expression of the surface protein of this molecule. The current study has provided insight into the possible influences of coronary hemodynamics on plaque localization, with VCAM-1 only significantly induced by the WSS from disease prone regions.

1.
Caro
,
C.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
(
1046
), pp.
109
133
.
2.
Zarins
,
C.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
, 1983, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
0009-7330,
53
, pp.
502
514
.
3.
Giddens
,
D.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
588
594
.
4.
Walpola
,
P.
,
Gotlieb
,
A. I.
,
Cybulsky
,
M. I.
, and
Langille
,
B. L.
, 1995, “
Expression of ICAM-1 and VCAM-1 and Monocyte Adherence in Arteries Exposed to Altered Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
15
, pp.
2
10
.
5.
Tardy
,
Y.
,
Resnick
,
N.
,
Nagel
,
T.
,
Gimbrone
,
M. A.
, Jr.
, and
Dewey
,
C. F.
, Jr.
, 1997, “
Shear Stress Gradients Remodel Endothelial Monolayers In Vitro Via a Cell Proliferation-Migration-Loss Cycle
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
11
), pp.
3102
3106
.
6.
Nerem
,
R.
,
Alexander
,
R. W.
,
Chapell
,
D. C.
,
Medford
,
R. M.
,
Varner
,
S. E.
, and
Taylor
,
R.
, 1998, “
The Study of the Influence of Flow on Vascular Endothelial Biology
,”
Am. J. Med. Sci.
0002-9629,
316
(
3
), pp.
169
175
.
7.
Noris
,
M.
,
Morigi
,
M.
,
Donadelli
,
R.
,
Aiello
,
S.
,
Foppolo
,
M.
,
Todeschini
,
M.
,
Orisio
,
S.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
, 1995, “
Nitric Oxide Synthesis by Cultured Endothelial Cells in Modulated by Flow Conditions
,”
Circ. Res.
0009-7330,
76
(
4
), pp.
536
543
.
8.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
, 1999, “
Temporal Gradient in Shear but Not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
, pp.
996
1003
.
9.
Blackman
,
B.
,
Thibault
,
L. E.
, and
Barbee
,
K. A.
, 2000, “
Selective Modulation of Endothelial Cell [Ca2+]i Response to Flow by the Onset Rate of Shear Stress
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
274
282
.
10.
Franke
,
R.-P.
,
Gräfe
,
M.
,
Schnittler
,
H.
,
Seiffge
,
D.
,
Mittermayer
,
C.
, and
Drenckhahn
,
D.
, 1984, “
Induction of Human Vascular Endothelial Stress Fibres by Fluid Shear Stress
,”
Nature (London)
0028-0836,
307
(
5952
), pp.
648
649
.
11.
Schnittler
,
H. -J.
,
Franke
,
R. P.
,
Akbay
,
U.
,
Mrowietz
,
C.
, and
Drenckhahn
,
D.
, 1993, “
Improved In Vitro Rheological System for Studying the Effect of Fluid Shear Stress on Cultured Cells
,”
Am. J. Physiol.
0002-9513,
265
, pp.
C289
C298
.
12.
Ziegler
,
T.
,
Alexander
,
R. W.
, and
Nerem
,
R. M.
, 1995, “
An Endothelial Cell-Smooth Muscle Cell Co-Culture Model for Use in the Investigation of Flow Effects on Vascular Biology
,”
Ann. Biomed. Eng.
0090-6964,
23
, pp.
216
225
.
13.
DePaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
, Jr.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
, 1999, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
3154
3159
.
14.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
, Jr.
, 1999, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
, pp.
1825
1834
.
15.
Mohan
,
S.
,
Mohan
,
N.
,
Valente
,
A. J.
, and
Sprague
,
E. A.
, 1999, “
Regulation of Low Shear Flow-Induced HAEC VCAM-1 Expression and Monocyte Adhesion
,”
Am. J. Physiol.
0002-9513,
276
, pp.
C1100
C1107
.
16.
Sampath
,
R.
,
Kukielka
,
G. L.
,
Smith
,
C. W.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 1995, “
Shear Stress-Mediated Changes in the Expression of Leukocyte Adhesion Receptors on Human Umbilical Vein Endothelial Cells In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
23
(
3
), pp.
247
256
.
17.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
, 1991, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
J. Biomech. Eng.
0148-0731,
113
, pp.
123
131
.
18.
Qiu
,
Y.
, and
Tarbell
,
J. M.
, 2000, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production
,”
J. Vasc. Res.
1018-1172,
37
, pp.
147
157
.
19.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, 2002, “
A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
397
407
.
20.
Yee
,
A.
,
Sakurai
,
Y.
,
Eskin
,
S. E.
, and
McIntire
,
L. V.
, 2006, “
A Validated System From Simulating Common Carotid Arterial Flow In Vitro: Alteration of Endothelial Cell Response
,”
Ann. Biomed. Eng.
0090-6964,
34
(
4
), pp.
593
604
.
21.
Yee
,
A.
,
Bosworth
,
K. A.
,
Conway
,
D. E.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 2008, “
Gene Expression of Endothelial Cells Under Pulsatile Non-Reversing Vs. Steady Shear Stress; Comparison of Nitric Oxide Production
,”
Ann. Biomed. Eng.
0090-6964,
36
(
4
), pp.
571
579
.
22.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, 2004, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
41
), pp.
14871
14876
.
23.
Wittstein
,
I. S.
,
Qiu
,
W.
,
Ziegelstein
,
R. C.
,
Hu
,
Q.
, and
Kass
,
D. A.
, 2000, “
Opposite Effects of Pressurized Steady Versus Pulsatile Perfusion on Vascular Endothelial Cell Cytosolic pH: Role of Tyrosine Kinase and Mitogen-Activated Protein Kinase Signalling
,”
Circ. Res.
0009-7330,
86
, pp.
1230
1236
.
24.
Himburg
,
H. A.
,
Dowd
,
S. E.
, and
Friedman
,
M. H.
, 2007, “
Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
, pp.
H645
H653
.
25.
Nachtigal
,
P.
,
Semecky
,
V.
,
Kopecky
,
M.
,
Gojova
,
A.
,
Solichova
,
D.
,
Zdansky
,
P.
, and
Zadak
,
Z.
, 2004, “
Application of Stereological Methods for the Quantification of VCAM-1 and ICAM-1 Expression in Early Stages of Rabbit Atherogenesis
,”
Pathol. Res. Pract.
0344-0338,
200
, pp.
219
229
.
26.
Blankenberg
,
S.
,
Barbaux
,
S.
, and
Tiret
,
L.
, 2003, “
Adhesion Molecules and Atherosclerosis
,”
Atherosclerosis
0021-9150,
170
, pp.
191
203
.
27.
Collins
,
T.
, 2001,
Leukocyte Recruitment, Endothelial Cell Adhesion Molecules and Transcriptional Control
,
Kluwer
,
Norwell, MA
.
28.
Tsuboi
,
H.
,
Ando
,
J.
,
Korenaga
,
R.
,
Takada
,
Y.
, and
Kamiya
,
A.
, 1995, “
Flow Stimulates ICAM-1 Expression Time and Shear Stress Dependently in Cultured Human Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
206
(
3
), pp.
988
996
.
29.
Ando
,
J.
,
Tsuboi
,
H.
,
Korenaga
,
R.
,
Takada
,
Y.
,
Toyama-Sorimachi
,
N.
,
Miyasaka
,
M.
, and
Kamiya
,
A.
, 1994, “
Shear Stress Inhibits Adhesion of Cultured Mouse Endothelial Cells to Lymphocytes by Downregulating VCAM-1 Expression
,”
Am. J. Physiol.
0002-9513,
267
, pp.
C679
681
.
30.
Ohtsuka
,
A.
,
Ando
,
J.
,
Korenaga
,
R.
,
Kamiya
,
A.
,
Toyama-Sorimachi
,
N.
, and
Miyasaka
,
M.
, 1993, “
The Effect of Flow on the Expression of Vascular Adhesion Molecule-1 by Cultured Mouse Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
193
(
1
), pp.
303
310
.
31.
Korenga
,
R.
,
Ando
,
J.
,
Kosaki
,
K.
,
Isshiki
,
M.
,
Takada
,
Y.
, and
Kamiya
,
A.
, 1997, “
Negative Transcriptional Regulation of the VCAM-1 Gene by Fluid Shear Stress in Murine Endothelial Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
273
, pp.
1506
1515
.
32.
Sorescu
,
G. P.
,
Sykes
,
M.
,
Weiss
,
D.
,
Platt
,
M. O.
,
Saha
,
A.
,
Hwang
,
J.
,
Boyd
,
N.
,
Boo
,
Y. C.
,
Vega
,
J. D.
,
Taylors
,
W. R.
, and
Hanjoong
,
J.
, 2003, “
Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response
,”
J. Biol. Chem.
0021-9258,
278
(
33
), pp.
31128
31135
.
33.
Malek
,
A.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
34.
Chappell
,
D.
,
Varner
,
S. E.
,
Nerem
,
R. M.
,
Medford
,
R. M.
, and
Alexander
,
R. W.
, 1998, “
Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium
,”
Circ. Res.
0009-7330,
82
, pp.
532
539
.
35.
Chiu
,
J. -J.
,
Lee
,
P. -L.
,
Chen
,
C. -H.
,
Lee
,
C. -I.
,
Chang
,
S. -F.
,
Chen
,
L. -J.
,
Lien
,
S. -C.
,
Ko
,
Y. -C.
,
Usami
,
S.
, and
Chien
,
S.
, 2004, “
Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-Selectin Expression Induced by Tumor Necrosis Factor-α in Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
24
, pp.
73
79
.
36.
Khan
,
B.
,
Harrison
,
D. G.
,
Olbrych
,
M. T.
,
Alexander
,
R. W.
, and
Medford
,
R. M.
, 1996, “
Nitric Oxide Regulates Vascular Cell Adhesion Molecule-1 Gene Expression and Redox-Sensitive Transcriptional Events in Human Vascular Endothelial Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
93
, pp.
9114
9119
.
37.
Cybulsky
,
M.
,
Iiyama
,
K.
,
Li
,
H.
,
Zhu
,
S.
,
Chen
,
M.
,
Iiyama
,
M.
,
Davis
,
V.
,
Gutierrez-Ramin
,
J. -C.
,
Connelly
,
P. W.
, and
Milstone
,
D. S.
, 2001, “
A Major Role for VCAM-1 but Not ICAM-1, in Early Atherosclerosis
,”
J. Clin. Invest.
0021-9738,
107
, pp.
1255
1262
.
38.
Collins
,
T.
, and
Cybulsky
,
M. L.
, 2001, “
NF-κB: Pivotal Mediator or Innocent Bystander in Atherogenesis
,”
J. Clin. Invest.
0021-9738,
107
(
3
), pp.
255
264
.
39.
Spiecker
,
M.
,
Peng
,
H. -B.
, and
Liao
,
J. K.
, 1997, “
Inhibition of Endothelial Vascular Cell Adhesion Molecule-1 Expression by Nitric Oxide Involves the Induction and Nuclear Translocation of IκBα
,”
J. Biol. Chem.
0021-9258,
272
(
49
), pp.
30969
30974
.
40.
Huo
,
Y.
, and
Ley
,
K.
, 2001, “
Adhesion Molecules and Atherogenesis
,”
Acta Physiol. Scand.
0001-6772,
173
, pp.
35
43
.
41.
Luc
,
G.
,
Arveiler
,
D.
,
Evans
,
A.
,
Amouyel
,
P.
,
Ferrieres
,
J.
,
Bard
,
J. -M.
,
Elkhalil
,
L.
,
Fruchart
,
J. -C.
, and
Ducimetiere
,
P.
, 2003, “
Circulating Soluble Adhesion Molecules ICAM-1 and VCAM-1 and Incident Coronary Heart Disease: The PRIME Study
,”
Atherosclerosis
0021-9150,
170
, pp.
169
176
.
42.
MacKay
,
S.
,
Potel
,
M. J.
, and
Rubin
,
J. M.
, 1982, “
Graphics Methods for Tracking 3D Heart Wall Motion
,”
Comput. Biomed. Res.
0010-4809,
15
, pp.
455
473
.
43.
Zeng
,
D.
,
Ding
,
Z.
,
Freidman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
420
429
.
44.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
0021-9290,
37
, pp.
1767
1775
.
45.
O'Brien
,
T.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
On Reducing Abnormal Hemodynamics in the Femoral End-to-Side Anastomosis: The Influence of Mechanical Factors
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
310
322
.
46.
Walsh
,
M. T.
,
Kavanagh
,
E. G.
,
O'Brien
,
T.
,
Grace
,
P. A.
, and
McGloughlin
,
T.
, 2003, “
On the Existence of an Optimum End-to Side Junctional Geometry in Peripheral Bypass Surgery-A Computer Generated Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
26
(
6
), pp.
649
656
. 1078-5884
47.
Myers
,
J.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
109
120
.
48.
Fox
,
B.
, and
Seed
,
W. A.
, 1981, “
Location of Early Atheroma in the Human Coronary Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
208
212
.
49.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
, pp.
1045
1066
.
50.
Ojha
,
M.
,
Leask
,
R. L.
,
Butany
,
J.
, and
Johnston
,
K. W.
, 2001, “
Distribution of Intimal and Medial Thickening in the Human Right Coronary Artery: A Study of 17 RCAs
,”
Atherosclerosis
0021-9150,
158
, pp.
147
153
.
51.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
74
82
.
52.
Takahashi
,
M.
,
Ikeda
,
U.
,
Masuyama
,
J. -I.
,
Kitagawa
,
S. -I.
,
Kasahara
,
T.
,
Shimpo
,
M.
,
Kano
,
S.
, and
Shimada
,
K.
, 1996, “
Monocyte-Endothelial Cell Interaction Induces Expression of Adhesion Molecules on Human Umbilical Cord Endothelial Cells
,”
Cardiovasc. Res.
0008-6363,
32
, pp.
422
429
.
53.
Kaplanski
,
G.
,
Marin
,
V.
,
Fabrigoule
,
M.
,
Boulay
,
V.
,
Benoliel
,
A. -M.
,
Bongrand
,
P.
,
Kaplanski
,
S.
, and
Farnarier
,
C.
, 1999, “
Thrombin-Activated Human Endothelial Cells Support Monocyte Adhesion In Vitro Following Expression of Intercellular Adhesion Molecule-1 (ICAM-1; CD54) and Vascular Cell Adhesion Molecule-1 (VCAM-1; CD 106)
,”
Blood
0006-4971,
92
(
4
), pp.
1259
1267
.
54.
Simoncini
,
T.
,
Maffei
,
S.
,
Basta
,
G.
,
Barsacchi
,
G.
,
Genazzani
,
A. R.
,
Liao
,
J. K.
, and
De Caterina
,
R.
, 2000, “
Estrogens and Glucocorticoids Inhibits Endothelial Vascular Cell Adhesion Molecule-1 Expression by Different Transcriptional Mechanisms
,”
Circ. Res.
0009-7330,
87
, pp.
19
25
.
55.
Smedby
,
O.
,
Johansson
,
J.
,
Molgaard
,
J.
,
Olsson
,
A. G.
,
Walldius
,
G.
, and
Erikson
,
U.
, 1995, “
Predilection of Atherosclerosis for the Inner Curvature in the Femoral Artery
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
15
, pp.
912
917
.
56.
Iademarco
,
M.
,
Barks
,
J. L.
, and
Dean
,
D. C.
, 1995, “
Regulation of Vascular Cell Adhesion Molecule-1 Expression by Il-1 and TNF-α in Cultured Endothelial Cells
,”
J. Clin. Invest.
0021-9738,
95
, pp.
264
271
.
57.
Tsouknos
,
A.
,
Nash
,
G. B.
, and
Rainger
,
E.
, 2003, “
Monocytes Initiate a Cycle of Leukocyte Recruitment When Cocultured With Endothelial Cells
,”
Atherosclerosis
0021-9150,
170
, pp.
49
58
.
58.
Singh
,
J. R.
,
Mason
,
J. C.
,
Lidington
,
E. A.
,
Edwrads
,
D. R.
,
Nuttall
,
R. K.
,
Kholha
,
R.
,
Knauper
,
V.
,
Murphy
,
G.
, and
Gavrilovic
,
J.
, 2005, “
Cytokine Stimulated Vascular Cell Adhesion Molecule-1 (VCAM-1) Ectodomain Release Is Regulated by TIMP-3
,”
Cardiovasc. Res.
0008-6363,
67
(
1
), pp.
39
49
.
59.
Hummel
,
V.
,
Kallmann
,
B. A.
,
Wagner
,
S.
,
Fuller
,
T.
,
Bayas
,
A.
,
Tonn
,
J. C.
,
Benveniste
,
E. N.
,
Toyka
,
K. V.
, and
Rieckmann
,
P.
, 2001, “
Production of MMPs in Human Cerebral Endothelial Cells and Their Role in Shedding Adhesion Molecules
,”
J. Neuropathol. Exp. Neurol.
0022-3069,
60
, pp.
320
327
.
60.
Levesque
,
J. P.
,
Takamatsu
,
Y.
,
Nilsson
,
S. K.
,
Haylock
,
D. N.
, and
Simmons
,
P. J.
, 2001, “
Vascular Cell Adhesion Molecule-1 (CD106) Is Cleaved by Neutrophil Proteases in the Bone Marrow Following Hematopoietic Progenitor Cell Mobilisation by Granulocyte Colony-Stimulating Factor
,”
Blood
0006-4971,
98
, pp.
1289
1297
.
61.
Johansson
,
M. W.
,
Lye
,
M. H.
,
Barthel
,
S. R.
,
Duffy
,
A. K.
,
Annis
,
D. S.
, and
Mosher
,
D. F.
, 2004, “
Eosinophils Adhere to Vascular Cell Adhesion Molecule-1 Via Podosomes
,”
Am. J. Respir. Cell Mol. Biol.
1044-1549,
31
(
4
), pp.
413
422
.
62.
Leendert
,
C. P.
, and
Issekutz
,
T. B.
, 1997,
Adhesion Molecules in Health and Disease
,
CRC
,
New York
, pp.
72
73
.
You do not currently have access to this content.