It is important to determine the three-dimensional nonuniform deformation of articular cartilage in its native environment. A new magnetic resonance imaging (MRI)-based technique (cartilage deformation by tag registration (CDTR)) has been developed, which can determine such deformations provided that the compressive load-displacement response of the knee reaches a quasi-steady state during cyclic loading. The objectives of this study were (1) to design and construct an apparatus to cyclically compress human cadaveric knees to physiological loads in a MRI scanner, (2) to determine the number of load cycles required to reach a quasi-steady-state load-displacement response for cyclic loading of human cadaveric knees, and (3) to collect sample MR images of undeformed and deformed states of tibiofemoral cartilage free of artifact while using the apparatus within a MRI scanner. An electropneumatic MRI-compatible apparatus was constructed to fit in a clinical MRI scanner, and a slope criterion was defined to indicate the point at which a quasi-steady-state load-displacement response, which would allow the use of CDTR, occurred during cyclic loading of a human knee. The average number of cycles required to reach a quasi-steady-state load-displacement response according to the slope criterion defined herein for three cadaveric knee joints was 356±69. This indicates that human knee joint specimens can be cyclically loaded such that deformation is repeatable according to MRI requirements of CDTR. Sample images of tibiofemoral cartilage were obtained for a single knee joint. These images demonstrate the usefulness of the apparatus in a MRI scanner. Thus the results of this study are a crucial step toward developing a MRI-based method to determine the deformations of articular cartilage in whole human cadaveric knees.

1.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
, 2000, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
691
713
2.
Wu
,
Q. Q.
, and
Chen
,
Q.
, 2000, “
Mechanoregulation of Chondrocyte Proliferation, Maturation, and Hypertrophy: Ion-Channel Dependent Transduction of Matrix Deformation Signals
,”
Exp. Cell Res.
,
256
, pp.
383
391
. 0014-4827
3.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
, 1992, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
0142-9612,
13
, pp.
67
97
.
4.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
, 1997, “
Articular Cartilage Part II: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation
,”
J. Bone Jt. Surg., Am. Vol.
,
79-A
, pp.
612
632
. 0021-9355
5.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
, pp.
1663
1673
.
6.
Guilak
,
F.
,
Butler
,
D. L.
, and
Goldstein
,
S. A.
, 2001, “
Functional Tissue Engineering: The Role of Biomechanics in Articular Cartilage Repair
,”
Clin. Orthop. Relat. Res.
,
391
(Suppl.), pp.
S295
S305
. 0021-9290
7.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
, 1999, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoropatellar Joints Under Static Loading
,”
J. Biomech.
0021-9290,
32
, pp.
1287
1295
.
8.
Herberhold
,
C.
,
Stammberger
,
T.
,
Faber
,
S.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
, 1998, “
An MR-Based Technique for Quantifying the Deformation of Articular Cartilage During Mechanical Loading in an Intact Cadaver Joint
,”
Magn. Reson. Med.
,
39
, pp.
843
850
. 0740-3194
9.
Eckstein
,
F.
,
Tieschky
,
M.
,
Faber
,
S.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
, 1999, “
Functional Analysis of Articular Cartilage Deformation, Recovery, and Fluid Flow Following Dynamic Exercise In Vivo
,”
Anat. Embryol.
,
200
, pp.
419
424
. 0340-2061
10.
Eckstein
,
F.
,
Tieschky
,
M.
,
Faber
,
S. C.
,
Haubner
,
M.
,
Kolem
,
H.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
, 1998, “
Effect of Physical Exercise on Cartilage Volume and Thickness In Vivo: MR Imaging Study
,”
Radiology
,
207
, pp.
243
248
. 0033-8419
11.
Neu
,
C. P.
,
Hull
,
M. L.
,
Walton
,
J. H.
, and
Buonocore
,
M. H.
, 2005, “
MRI-Based Technique for Determining Nonuniform Deformations Throughout the Volume of Articular Cartilage Explants
,”
Magn. Reson. Med.
0740-3194,
53
, pp.
321
328
.
12.
Neu
,
C. P.
, and
Walton
,
J. H.
, 2008, “
Displacement Encoding for the Measurement of Cartilage Deformation
,”
Magn. Reson. Med.
,
59
, pp.
149
155
. 0740-3194
13.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
, 1981, “
The Role of Joint Load in Knee Stability
,”
J. Bone Jt. Surg., Am. Vol.
,
63-A
, pp.
570
585
. 0021-9355
14.
Szklar
,
O.
, and
Ahmed
,
A. M.
, 1987, “
A Simple Unconstrained Dynamic Knee Simulator
,”
ASME J. Biomech. Eng.
,
109
, pp.
247
251
. 0148-0731
15.
DiAngelo
,
D. J.
, and
Harrington
,
I. A.
, 1992, “
Design of a Dynamic Multi-Purpose Joint Simulator
,”
Adv. Bioeng.
0360-9960,
22
, pp.
107
110
.
16.
McLean
,
C. A.
, and
Ahmed
,
A. M.
, 1993, “
Design and Development of an Unconstrained Dynamic Knee Simulator
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
144
148
.
17.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
, 1981, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Jt. Surg., Am. Vol.
,
63
, pp.
1257
1269
. 0021-9355
18.
Torzilli
,
P. A.
,
Deng
,
X.
, and
Warren
,
R. F.
, 1994, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sports Med.
,
22
, pp.
105
112
. 0363-5465
19.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
, 1988, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
0021-9290,
21
, pp.
705
720
.
20.
Bach
,
J. M.
, and
Hull
,
M. L.
, 1995, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
373
382
.
21.
Yao
,
J.
,
Snibbe
,
J.
,
Maloney
,
M.
, and
Lerner
,
A. L.
, 2006, “
Stresses and Strains in the Medial Meniscus of an ACL Deficient Knee Under Anterior Loading: A Finite Element Analysis With Image-Based Experimental Validation
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
135
141
.
22.
Song
,
Y.
,
Greve
,
J. M.
,
Carter
,
D. R.
,
Koo
,
S.
, and
Giori
,
N. J.
, 2006, “
Articular Cartilage MR Imaging and Thickness Mapping of a Loaded Knee Joint Before and After Meniscectomy
,”
Osteoarthritis Cartilage
,
14
, pp.
728
737
. 1063-4584
23.
Neu
,
C. P.
, and
Hull
,
M. L.
, 2003, “
Toward an MRI-Based Method to Measure Non-Uniform Cartilage Deformation: An MRI-Cyclic Loading Apparatus System and Steady-State Cyclic Displacement of Articular Cartilage Under Compressive Loading
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
180
188
.
24.
Neu
,
C. P.
,
Hull
,
M. L.
, and
Walton
,
J. H.
, 2005, “
Heterogeneous Three-Dimensional Strain Fields During Unconfined Cyclic Compression in Bovine Articular Cartilage Explants
,”
J. Orthop. Res.
0736-0266,
23
, pp.
1390
1398
.
25.
Morrison
,
J. B.
, 1970, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
0021-9290,
3
, pp.
51
61
.
26.
Contini
,
R.
, 1972, “
Body Segment Parameters. II
,”
Artif. Limbs
,
16
, pp.
1
19
. 0004-3729
27.
Pennock
,
G. R.
, and
Clark
,
K. J.
, 1990, “
An Anatomy-Based Coordinate System for the Description of the Kinematic Displacements in the Human Knee
,”
J. Biomech.
0021-9290,
23
, pp.
1209
1218
.
28.
Martin
,
K. J.
,
Neu
,
C. P.
, and
Hull
,
M. L.
, 2007, “
A MRI-Based Method to Align the Compressive Loading Axis for Human Cadaveric Knees
,”
ASME J. Biomech. Eng.
,
129
, pp.
855
862
. 0148-0731
29.
Eckhoff
,
D. G.
,
Bach
,
J. M.
,
Spitzer
,
V. M.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
,
Baldini
,
T. H.
, and
Flannery
,
N. M. P.
, 2005, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
, pp.
71
80
.
30.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuck
,
A. G.
, 1993, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
. 0009-921X
31.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
, pp.
136
144
. 0148-0731
32.
Liu-Barba
,
D.
, 2006, “
Fixation Level and Laxity in ACL Reconstruction and Coupled Motions Under Compressive Loading: A Two Part Study
,” MS thesis, University of California, Davis, CA.
33.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wooten
,
M. E.
, 1990, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
0736-0266,
8
, pp.
383
392
.
34.
Sutherland
,
D. H.
,
Kaufman
,
K. R.
, and
Moitoza
,
J. R.
, 1994, “
Kinematics of Normal Human Walking
,”
Human Walking
,
J.
Rose
and
J. G.
Gambles
, eds.,
Williams and Wilkins
,
Baltimore, MD
, pp.
23
44
.
35.
Markl
,
M.
,
Reeder
,
S. B.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Herfkens
,
R. J.
, and
Pelc
,
N. J.
, 2004, “
Steady-State Free Precession MR Imaging: Improved Myocardial Tag Persistence and Signal-to-Noise Ratio for Analysis of Myocardial Motion
,”
Radiology
,
230
, pp.
852
861
. 0033-8419
36.
Neu
,
C. P.
,
Hull
,
M. L.
, and
Walton
,
J. H.
, 2005, “
Error Optimization of a Three-Dimensional Magnetic Resonance Imaging Tagging-Based Cartilage Deformation Technique
,”
Magn. Reson. Med.
0740-3194,
54
, pp.
1290
1294
.
37.
Ehman
,
R. L.
, and
Felmlee
,
J. P.
, 1989, “
Adaptive Technique for High-Definition MR Imaging of Moving Structures
,”
Radiology
,
173
, pp.
255
263
. 0033-8419
38.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
. 0148-0731
39.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
, 2003, “
How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint
,”
J. Biomech.
0021-9290,
36
, pp.
19
34
.
40.
Huang
,
J. I.
,
Kazmi
,
N.
,
Durbhakula
,
M. M.
,
Hering
,
T. M.
,
Yoo
,
J. U.
, and
Johnstone
,
B.
, 2005, “
Chondrogenic Potential of Progenitor Cells Derived From Human Bone Marrow and Adipose Tissue: A Patient-Matched Comparison
,”
J. Orthop. Res.
,
23
, pp.
1383
1389
. 0736-0266
41.
Reddi
,
H. A.
, 1998, “
Role of Morphogenetic Proteins in Skeletal Tissue Engineering and Regeneration
,”
Nat. Biotechnol.
1087-0156,
16
, pp.
247
252
.
You do not currently have access to this content.