Abstract

The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semidefiniteness of the permeability or diffusivity tensor. Formulations are presented, which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and nonaffine reorientations of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations.

1.
Basser
,
P. J.
,
Mattiello
,
J.
, and
LeBihan
,
D.
, 1994, “
Estimation of the Effective Self-Diffusion Tensor From the NMR Spin Echo
,”
J. Magn. Reson., Ser. B
1064-1866,
103
(
3
), pp.
247
254
.
2.
Basser
,
P. J.
,
Mattiello
,
J.
, and
LeBihan
,
D.
, 1994, “
MR Diffusion Tensor Spectroscopy and Imaging
,”
Biophys. J.
0006-3495,
66
(
1
), pp.
259
267
.
3.
Basser
,
P. J.
, 1995, “
Inferring Microstructural Features and the Physiological State of Tissues From Diffusion-Weighted Images
,”
NMR Biomed.
0952-3480,
8
(
7
), pp.
333
344
.
4.
Ellegood
,
J.
,
McKay
,
R. T.
,
Hanstock
,
C. C.
, and
Beaulieu
,
C.
, 2007, “
Anisotropic Diffusion of Metabolites in Peripheral Nerve Using Diffusion Weighted Magnetic Resonance Spectroscopy at Ultra-High Field
,”
J. Magn. Reson.
1090-7807,
184
(
1
), pp.
20
28
.
5.
Hsu
,
E. W.
,
Buckley
,
D. L.
,
Bui
,
J. D.
,
Blackband
,
S. J.
, and
Forder
,
J. R.
, 2001, “
Two-Component Diffusion Tensor MRI of Isolated Perfused Hearts
,”
Magn. Reson. Med.
0740-3194,
45
(
6
), pp.
1039
1045
.
6.
Hwang
,
C. W.
, and
Edelman
,
E. R.
, 2002, “
Arterial Ultrastructure Influences Transport of Locally Delivered Drugs
,”
Circ. Res.
0009-7330,
90
(
7
), pp.
826
832
.
7.
Jackson
,
A.
,
Yao
,
H.
,
Brown
,
M. D.
, and
Yong Gu
,
W.
, 2006, “
Anisotropic Ion Diffusivity in Intervertebral Disc: An Electrical Conductivity Approach
,”
Spine
0362-2436,
31
(
24
), pp.
2783
2789
.
8.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
, 2006, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
0006-3495,
91
(
1
), pp.
311
316
.
9.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
, 1999, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
0362-2436,
24
(
23
), pp.
2449
2455
.
10.
Federico
,
S.
, and
Herzog
,
W.
, 2008, “
On the Anisotropy and Inhomogeneity of Permeability in Articular Cartilage
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
5
), pp.
367
378
.
11.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
, 1955, “
Stress-Deformation Relations for Isotropic Materials
,”
J Rational Mech Anal
,
4
, pp.
323
425
.
12.
Liu
,
I. -S.
, 1982, “
On Representations of Anisotropic Invariants
,”
Int. J. Eng. Sci.
0020-7225,
20
(
10
), pp.
1099
1109
.
13.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
.
14.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
,
Baldwin
,
A. L.
, and
Wilson
,
L. M.
, 1998, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
188
194
.
15.
Curnier
,
A.
,
He
,
Q. -H.
, and
Zysset
,
P.
, 1995, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
(
1
), pp.
1
38
.
16.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer-Verlag
,
New York
.
17.
Noble
,
B.
, and
Daniel
,
J. W.
, 1977,
Applied Linear Algebra
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1145
1156
.
19.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
2
), pp.
61
66
.
20.
Reynaud
,
B.
, and
Quinn
,
T. M.
, 2006, “
Anisotropic Hydraulic Permeability in Compressed Articular Cartilage
,”
J. Biomech.
0021-9290,
39
(
1
), pp.
131
137
.
21.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
, 2001, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
0021-9290,
34
(
9
), pp.
1197
1202
.
22.
Mansour
,
J. M.
, and
Mow
,
V. C.
, 1976, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
58
(
4
), pp.
509
516
.
23.
Weiss
,
J. A.
, and
Maakestad
,
B. J.
, 2006, “
Permeability of Human Medial Collateral Ligament in Compression Transverse to the Collagen Fiber Direction
,”
J. Biomech.
0021-9290,
39
(
2
), pp.
276
283
.
24.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
0021-9290,
30
(
11–12
), pp.
1157
1164
.
25.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1998, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
535
544
.
26.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 2000, “
A Special Theory of Biphasic Mixtures and Experimental Results for Human Annulus Fibrosus Tested in Confined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
180
188
.
27.
Perie
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
, 2005, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
0021-9290,
38
(
11
), pp.
2164
2171
.
28.
Perie
,
D. S.
,
Maclean
,
J. J.
,
Owen
,
J. P.
, and
Iatridis
,
J. C.
, 2006, “
Correlating Material Properties With Tissue Composition in Enzymatically Digested Bovine Annulus Fibrosus and Nucleus Pulposus Tissue
,”
Ann. Biomed. Eng.
0090-6964,
34
(
5
), pp.
769
777
.
29.
Holmes
,
M. H.
, 1986, “
Finite Deformation of Soft Tissue: Analysis of a Mixture Model in Uni-Axial Compression
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
4
), pp.
372
381
.
30.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
0021-9290,
23
(
2
), pp.
145
155
.
31.
Suh
,
J. K.
, and
Spilker
,
R. L.
, 1994, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
1
9
.
32.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
(
1
), pp.
25
46
.
33.
Levenston
,
M. E.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1999, “
Electrokinetic and Poroelastic Coupling During Finite Deformations of Charged Porous Media
,”
ASME J. Appl. Mech.
0021-8936,
66
(
2
), pp.
323
333
.
34.
Sun
,
D. D.
, and
Leong
,
K. W.
, 2004, “
A Nonlinear Hyperelastic Mixture Theory Model for Anisotropy, Transport, and Swelling of Annulus Fibrosus
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
92
102
.
35.
Garcia
,
J. J.
, and
Cortes
,
D. H.
, 2006, “
A Nonlinear Biphasic Viscohyperelastic Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
2991
2998
.
36.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
405
412
.
37.
Ehlers
,
W.
,
Karajan
,
N.
, and
Markert
,
B.
, 2009, “
An Extended Biphasic Model for Charged Hydrated Tissues With Application to the Intervertebral Disc
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
3
), pp.
233
251
.
38.
Bowen
,
R. M.
, 1982, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
20
(
6
), pp.
697
735
.
39.
Ateshian
,
G. A.
, 2007, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
6
), pp.
423
445
.
40.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
41.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960, “
The Classical Field Theories
,”
Handbuch der Physik
,
S.
Flugge
, ed.,
Springer-Verlag
,
Berlin
, Vol.
III/1
.
42.
Nye
,
J. F.
, 1984,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.