The Fontan operation is a palliative surgical procedure performed on children, born with congenital heart defects that have yielded only a single functioning ventricle. The total cavo-pulmonary connection (TCPC) is a common variant of the Fontan procedure, where the superior vena cava (SVC) and inferior vena cava (IVC) are routed directly into the pulmonary arteries (PA). Due to the limited pumping energy available, optimized hemodynamics, in turn, minimized power loss, inside the TCPC pathway is required for the best optimal surgical outcomes. To complement ongoing efforts to optimize the anatomical geometric design of the surgical Fontan templates, here, we focused on the characterization of power loss changes due to the temporal variations in between SVC and IVC flow waveforms. An experimentally validated pulsatile computational fluid dynamics solver is used to quantify the effect of phase-shift between SVC and IVC inflow waveforms and amplitudes on internal energy dissipation. The unsteady hemodynamics of two standard idealized TCPC geometries are presented, incorporating patient-specific real-time PC-MRI flow waveforms of “functional” Fontan patients. The effects of respiration and pulsatility on the internal energy dissipation of the TCPC pathway are analyzed. Optimization of phase-shift between caval flows is shown to lead to lower energy dissipation up to 30% in these idealized models. For physiological patient-specific caval waveforms, the power loss is reduced significantly (up to 11%) by the optimization of all three major harmonics at the same mean pathway flow (3 L/min). Thus, the hemodynamic efficiency of single ventricle circuits is influenced strongly by the caval flow waveform quality, which is regulated through respiratory dependent physiological pathways. The proposed patient-specific waveform optimization protocol may potentially inspire new therapeutic applications to aid postoperative hemodynamics and improve the well being of the Fontan patients.

1.
Fontan
,
F.
, and
Baudet
,
E.
, 1971, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
0040-6376,
26
(
3
), pp.
240
248
.
2.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
, 1988, “
Total Cavopulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations. Experimental Studies and Early Clinical Experience
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
96
(
5
), pp.
682
695
.
3.
DeGroff
,
C. G.
, 2008, “
Modeling the Fontan Circulation: Where We Are and Where We Need to Go
,”
Pediatr. Cardiol.
0172-0643,
29
(
1
), pp.
3
12
.
4.
Yang
,
W.
,
Feinstein
,
J.
,
Reddy
,
V. M.
, and
Marsden
,
A.
, 2008, “
Optimization of an Idealized Y-Shaped Extracardiac Fontan Baffle
,”
Proceedings of the 61st Annual Meeting of the APS Division of Fluid Dynamics
, San Antonio, TX.
5.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
, 2003, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
126
(
4
), pp.
1040
1047
.
6.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
, 1996, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
111
(
3
), pp.
502
513
.
7.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
, 1999, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thorac. Surg.
0003-4975,
68
(
4
), pp.
1384
1390
.
8.
Ensley
,
A. E.
,
Ramuzat
,
A.
,
Healy
,
T. M.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
,
Pettigrew
,
R.
, and
Yoganathan
,
A. P.
, 2000, “
Fluid Mechanic Assessment of the Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry
,”
Ann. Biomed. Eng.
0090-6964,
28
(
10
), pp.
1172
1183
.
9.
Gerdes
,
A.
,
Kunze
,
J.
,
Pfister
,
G.
, and
Sievers
,
H. H.
, 1999, “
Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections
,”
Ann. Thorac. Surg.
0003-4975,
67
(
6
), pp.
1760
1764
.
10.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Fontaine
,
A. A.
,
Panchal
,
S.
,
Ensley
,
A. E.
,
Oshinski
,
J.
,
Sharma
,
S.
,
Ha
,
B.
,
Lucas
,
C. L.
, and
Yoganathan
,
A. P.
, 1995, “
Hemodynamics of the Fontan Connection: An In-Vitro Study
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
4
), pp.
423
428
.
11.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2009, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
137
(
2
), pp.
394
403.e2
.
12.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
Fumero
,
R.
, 1999, “
Computational Fluid Dynamic Simulations of Cavopulmonary Connections With an Extracardiac Lateral Conduit
,”
Med. Eng. Phys.
1350-4533,
21
(
3
), pp.
187
193
.
13.
Ryu
,
K.
,
Healy
,
T. M.
,
Ensley
,
A. E.
,
Sharma
,
S.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
, 2001, “
Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and In Vitro Experiments
,”
Ann. Biomed. Eng.
0090-6964,
29
(
10
), pp.
844
853
.
14.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A.
, 1996, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
0735-1097,
27
(
5
), pp.
1264
1269
.
15.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
, 2007, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
0003-4975,
83
(
6
), pp.
2182
2190
.
16.
DeGroff
,
C.
,
Birnbaum
,
B.
,
Shandas
,
R.
,
Orlando
,
W.
, and
Hertzberg
,
J.
, 2005, “
Computational Simulations of the Total Cavo-Pulmonary Connection: Insights in Optimizing Numerical Solutions
,”
Med. Eng. Phys.
1350-4533,
27
(
2
), pp.
135
146
.
17.
Khunatorn
,
Y.
,
Mahalingam
,
S.
,
DeGroff
,
C. G.
, and
Shandas
,
R.
, 2002, “
Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures Within the Total Cavopulmonary Connection: A Numerical Study
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
364
377
.
18.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
, and
Pietrabissa
,
R.
, 1996, “
A Computational Pulsatile Model of the Bidirectional Cavopulmonary Anastomosis: The Influence of Pulmonary Forward Flow
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
520
528
.
19.
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Ge
,
L.
,
Sotiropoulos
,
F.
,
Frakes
,
D.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
, 2005, “
Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
284
300
.
20.
Wang
,
C.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Horner
,
M.
,
Parihar
,
A.
,
Kulkarni
,
A.
, and
Yoganathan
,
A. P.
, 2007, “
Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections
,”
Ann. Biomed. Eng.
0090-6964,
35
(
11
), pp.
1840
1856
.
21.
DeGroff
,
G. C.
, and
Shandas
,
R.
, 2002, “
Designing the Optimal Total Cavopulmonary Connection: Pulsatile Versus Steady Flow Experiments
,”
Med. Sci. Monit.
1234-1010,
8
(
3
), pp.
41
45
.
22.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2007, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
0090-6964,
35
(
2
), pp.
250
263
.
23.
Migliavacca
,
F.
,
Dubini
,
G.
,
Bove
,
E. L.
, and
de Leval
,
M. R.
, 2003, “
Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
805
813
.
24.
Rowland
,
T. W.
, 2001, “
The Circulatory Response to Exercise: Role of the Peripheral Pump
,”
Int. J. Sports Med.
0172-4622,
22
(
8
), pp.
558
565
.
25.
Pekkan
,
K.
,
Frakes
,
D.
,
De Zelicourt
,
D.
,
Lucas
,
C. W.
,
Parks
,
W. J.
, and
Yoganathan
,
A. P.
, 2005, “
Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations With a Lumped-Parameter Model
,”
ASAIO J.
1058-2916,
51
(
5
), pp.
618
628
.
26.
Sundareswaran
,
K. S.
,
Pekkan
,
K.
,
Dasi
,
L. P.
,
Kitajima
,
H. D.
,
Whitehead
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
, 2007, “
Significant Impact of the Total Cavopulmonary Connection (TCPC) Resistance on Cardiac Output and Exercise Performance in Single Ventricles
,”
Proceedings of the American Heart Association (AHA) Scientific Sessions
, Orange County Convention Center, Orlando, FL.
27.
Sundareswaran
,
K. S.
,
Pekkan
,
K.
,
Dasi
,
L. P.
,
Whitehead
,
K.
,
Sharma
,
S.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
, 2008, “
The Total Cavopulmonary Connection Resistance: A Significant Impact on Single Ventricle Hemodynamics at Rest and Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
295
(
6
), pp.
H2427
H2435
.
28.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitajima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
, 2007, “
Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics
,”
Circulation
0009-7322,
116
(
11
), pp.
I165
I171
.
29.
Hjortdal
,
V. E.
,
Emmertsen
,
K.
,
Stenbog
,
E.
,
Frund
,
T.
,
Schmidt
,
M. R.
,
Kromann
,
O.
,
Sorensen
,
K.
, and
Pedersen
,
E. M.
, 2003, “
Effects of Exercise and Respiration on Blood Flow in Total Cavopulmonary Connection: A Real-Time Magnetic Resonance Flow Study
,”
Circulation
0009-7322,
108
(
10
), pp.
1227
1231
.
30.
Pekkan
,
K.
,
Dur
,
O.
,
Sundareswaran
,
K.
,
Kanter
,
K.
,
Fogel
,
M.
,
Yoganathan
,
A.
, and
Undar
,
A.
, 2008, “
Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
6
), p.
061012
.
31.
Hjortdal
,
V. E.
,
Christensen
,
T. D.
,
Larsen
,
S. H.
,
Emmertsen
,
K.
, and
Pedersen
,
E. M.
, 2008, “
Caval Blood Flow During Supine Exercise in Normal and Fontan Patients
,”
Ann. Thorac. Surg.
0003-4975,
85
(
2
), pp.
599
603
.
32.
Houlind
,
K.
,
Stenbog
,
E. V.
,
Sorensen
,
K. E.
,
Emmertsen
,
K.
,
Hansen
,
O. K.
,
Rybro
,
L.
, and
Hjortdal
,
V. E.
, 1999, “
Pulmonary and Caval Flow Dynamics After Total Cavopulmonary Connection
,”
Heart
1355-6037,
81
(
1
), pp.
67
72
.
33.
Hsia
,
T. Y.
,
Khambadkone
,
S.
,
Redington
,
A. N.
,
Migliavacca
,
F.
,
Deanfield
,
J. E.
, and
de Leval
,
M. R.
, 2000, “
Effects of Respiration and Gravity on Infradiaphragmatic Venous Flow in Normal and Fontan Patients
,”
Circulation
0009-7322,
102
(
19
), pp.
III148
III153
.
34.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Hoydu
,
A.
,
Hubbard
,
A.
,
Rychik
,
J.
,
Jacobs
,
M.
,
Fellows
,
K. E.
, and
Haselgrove
,
J.
, 1997, “
The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
114
(
6
), pp.
1032
1041
.
35.
Dur
,
O.
,
Kocyildirim
,
E.
,
Degroff
,
C. G.
,
Wearden
,
P.
,
Morell
,
V.
, and
Pekkan
,
K.
, 2009, “
Effect of Caval Waveform on Energy Dissipation of Failing Fontan Patients
,”
Proceedings of the ASME Summer Bioengineering Conference
, Lake Tahoe, CA.
36.
Leefe
,
S. E.
, and
Gentle
,
C. R.
, 1987, “
Theoretical Evaluation of Energy Loss Methods in the Analysis of Prosthetic Heart Valves
,”
ASME J. Biomed. Eng.
,
9
(
2
), pp.
121
127
.
37.
Grigioni
,
M.
,
D’Avenio
,
G.
,
Amodeo
,
A.
, and
Di Donato
,
R. M.
, 2006, “
Power Dissipation Associated With Surgical Operations’ Hemodynamics: Critical Issues and Application to the Total Cavopulmonary Connection
,”
J. Biomech.
0021-9290,
39
(
9
), pp.
1583
1594
.
38.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
, 2001, “
Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
317
324
.
39.
Guyton
,
A. C.
,
Coleman
,
T. G.
, and
Granger
,
H. J.
, 1972, “
Circulation: Overall Regulation
,”
Annu. Rev. Physiol.
0066-4278,
34
, pp.
13
44
.
40.
Takata
,
M.
,
Beloucif
,
S.
,
Shimada
,
M.
, and
Robotham
,
J. L.
, 1992, “
Superior and Inferior Vena Caval Flows During Respiration: Pathogenesis of Kussmaul’s Sign
,”
Am. J. Physiol.
0002-9513,
262
(
3
), pp.
H763
H770
.
41.
Robotham
,
J. L.
, and
Takata
,
M.
, 1995, “
Mechanical Abdomino/Heart/Lung Interaction
,”
J. Sleep Res.
0962-1105,
4
(
S1
), pp.
50
52
.
42.
Takata
,
M.
, and
Robotham
,
J. L.
, 1992, “
Effects of Inspiratory Diaphragmatic Descent on Inferior Vena Caval Venous Return
,”
J. Appl. Physiol.
8750-7587,
72
(
2
), pp.
597
607
.
43.
Takata
,
M.
,
Wise
,
R. A.
, and
Robotham
,
J. L.
, 1990, “
Effects of Abdominal Pressure on Venous Return: Abdominal Vascular Zone Conditions
,”
J. Appl. Physiol.
8750-7587,
69
(
6
), pp.
1961
1972
.
44.
Penny
,
D. J.
, and
Redington
,
A. N.
, 1991, “
Doppler Echocardiographic Evaluation of Pulmonary Blood Flow After the Fontan Operation: The Role of the Lungs
,”
Br. Heart J.
0007-0769,
66
(
5
), pp.
372
374
.
45.
Decramer
,
M.
,
De Troyer
,
A.
,
Kelly
,
S.
,
Zocchi
,
L.
, and
Macklem
,
P. T.
, 1984, “
Regional Differences in Abdominal Pressure Swings in Dogs
,”
J. Appl. Physiol.
8750-7587,
57
(
6
), pp.
1682
1687
.
46.
Amin
,
Z.
,
McElhinney
,
D. B.
,
Strawn
,
J. K.
,
Kugler
,
J. D.
,
Duncan
,
K. F.
,
Reddy
,
V. M.
,
Petrossian
,
E.
, and
Hanley
,
F. L.
, 2001, “
Hemidiaphragmatic Paralysis Increases Postoperative Morbidity After a Modified Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
122
(
5
), pp.
856
862
.
47.
Hsia
,
T. Y.
,
Khambadkone
,
S.
,
Bradley
,
S. M.
, and
de Leval
,
M. R.
, 2007, “
Subdiaphragmatic Venous Hemodynamics in Patients With Biventricular and Fontan Circulation After Diaphragm Plication
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
134
(
6
), pp.
1397
1405
.
48.
Anderson
,
P. A.
,
Sleeper
,
L. A.
,
Mahony
,
L.
,
Colan
,
S. D.
,
Atz
,
A. M.
,
Breitbart
,
R. E.
,
Gersony
,
W. M.
,
Gallagher
,
D.
,
Geva
,
T.
,
Margossian
,
R.
,
McCrindle
,
B. W.
,
Paridon
,
S.
,
Schwartz
,
M.
,
Stylianou
,
M.
,
Williams
,
R. V.
, and
Clark
,
B. J.
, III
, 2008, “
Contemporary Outcomes After the Fontan Procedure: A Pediatric Heart Network Multicenter Study
,”
J. Am. Coll. Cardiol.
0735-1097,
52
(
2
), pp.
85
98
.
49.
Ghanayem
,
N. S.
,
Berger
,
S.
, and
Tweddell
,
J. S.
, 2007, “
Medical Management of the Failing Fontan
,”
Pediatr. Cardiol.
0172-0643,
28
(
6
), pp.
465
471
.
50.
Marino
,
B. S.
, 2002, “
Outcomes After the Fontan Procedure
,”
Curr. Opin. Pediatr.
1040-8703,
14
(
5
), pp.
620
626
.
51.
Dur
,
O.
,
Lara
,
M.
,
Arnold
,
D.
,
Vandenberghe
,
S.
,
Keller
,
B. B.
,
DeGroff
,
C.
, and
Pekkan
,
K.
, 2009, “
Pulsatile In Vitro Simulation of the Pediatric Univentricular Circulation for Evaluation of Cardiopulmonary Assist Scenarios
,”
Artif. Organs
0160-564X,
33
(
11
), pp.
967
976
.
52.
Pekkan
,
K.
,
Sasmazel
,
A.
,
Sundareswaran
,
K.
,
Parks
,
W. J.
,
Kanter
,
K.
,
Lucas
,
C.
,
Fogel
,
M.
, and
Yoganathan
,
A.
, 2006, “
Respiratory Augmentation of Blood Flow in the Early Post-Op Fontan Circulation—Feasibility of Intra-Pulmonic Balloon Pumping and External Counterpulsation of Systemic Venous Return
,”
Proceedings of the 16th World Congress of the World Society of Cardio-Thoracic Surgeons
, Ottawa, ON, Canada.
53.
Throckmorton
,
A. L.
,
Ballman
,
K. K.
,
Myers
,
C. D.
,
Frankel
,
S. H.
,
Brown
,
J. W.
, and
Rodefeld
,
M. D.
, 2008, “
Performance of a 3-Bladed Propeller Pump to Provide Cavopulmonary Assist in the Failing Fontan Circulation
,”
Ann. Thorac. Surg.
0003-4975,
86
(
4
), pp.
1343
1347
.
54.
Dasi
,
L. P.
,
Pekkan
,
K.
,
Katajima
,
H. D.
, and
Yoganathan
,
A. P.
, 2008, “
Functional Analysis of Fontan Energy Dissipation
,”
J. Biomech.
0021-9290,
41
(
10
), pp.
2246
2252
.
55.
KrishnankuttyRema
,
R.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Sundareswaran
,
K.
,
Fogel
,
M.
,
Sharma
,
S.
,
Kanter
,
K.
,
Spray
,
T.
, and
Yoganathan
,
A. P.
, 2008, “
Quantitative Analysis of Extracardiac Versus Intraatrial Fontan Anatomic Geometries
,”
Ann. Thorac. Surg.
0003-4975,
85
(
3
), pp.
810
817
.
56.
Ketner
,
M. W.
,
Lucas
,
C. L.
,
Mill
,
M. R.
,
Sheridan
,
B.
, and
Lucas
,
W.
, 2004, “
Energetics and Hemodynamic Changes of Normal and Various Right Heart Bypass (Fontan) Circulations in Lambs Under Varying Respiration Parameters
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
5
, pp.
3785
3788
.
57.
Lucas
,
C
.,
Ketner
,
M
.,
Steele
,
B
.,
Mill
,
M. R.
,
Sheridan
,
B.
,
Lucas
,
W. J.
,
Pekkan
,
K.
, and
Yoganathan
,
A.
, 2006, “
Importance of Respiration and Graft Compliance in Fontan Circulations: Experimental and Computational Studies
,”
J. Biomech.
0021-9290,
39
(
1
), p.
S207
.
58.
Orlando
,
W.
,
Shandas
,
R.
, and
DeGroff
,
C.
, 2006, “
Efficiency Differences in Computational Simulations of the Total Cavo-Pulmonary Circulation With and Without Compliant Vessel Walls
,”
Comput. Methods Programs Biomed.
0169-2607,
81
(
3
), pp.
220
227
.
59.
Masters
,
J. C.
,
Ketner
,
M.
,
Bleiweis
,
M. S.
,
Mill
,
M.
,
Yoganathan
,
A.
, and
Lucas
,
C. L.
, 2004, “
The Effect of Incorporating Vessel Compliance in a Computational Model of Blood Flow in a Total Cavopulmonary Connection (TCPC) With Caval Centerline Offset
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
709
713
.
60.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
, 2003, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
347
354
.
61.
Vignon-Clementel
,
I.
,
Figueroa
,
A.
,
Jansen
,
K.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
You do not currently have access to this content.