Abstract

This study formulates and implements a finite element contact algorithm for solid-fluid (biphasic) mixtures, accommodating both finite deformation and sliding. The finite element source code is made available to the general public. The algorithm uses a penalty method regularized with an augmented Lagrangian method to enforce the continuity of contact traction and normal component of fluid flux across the contact interface. The formulation addresses the need to automatically enforce free-draining conditions outside of the contact interface. The accuracy of the implementation is verified using contact problems, for which exact solutions are obtained by alternative analyses. Illustrations are also provided that demonstrate large deformations and sliding under configurations relevant to biomechanical applications such as articular contact. This study addresses an important computational need in the biomechanics of porous-permeable soft tissues. Placing the source code in the public domain provides a useful resource to the biomechanics community.

References

1.
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 1998, “
A Contact Finite Element Formulation for Biological Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
153
(
1–2
), pp.
63
79
.
2.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
3.
Yang
,
T.
, and
Spilker
,
R. L.
, 2007, “
A Lagrange Multiplier Mixed Finite Element Formulation for Three-Dimensional Contact of Biphasic Tissues
,”
J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
457
471
.
4.
Chen
,
X.
,
Chen
,
Y.
, and
Hisada
,
T.
, 2005, “
Development of a Finite Element Procedure of Contact Analysis for Articular Cartilage With Large Deformation Based on the Biphasic Theory
,”
JSME Int. J., Ser. C
1340-8062,
48
(
4
), pp.
537
546
.
5.
Federico
,
S.
,
La Rosa
,
G.
,
Herzog
,
W.
, and
Wu
,
J. Z.
, 2004, “
Effect of Fluid Boundary Conditions on Joint Contact Mechanics and Applications to the Modeling of Osteoarthritic Joints
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
220
225
(Erratum in:
Federico
,
S.
,
La Rosa
,
G.
,
Herzog
,
W.
, and
Wu
,
J. Z.
(2005),
J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
205
209
).
6.
Warner
,
M. D.
,
Taylor
,
W. R.
, and
Clift
,
S. E.
, 2001, “
Finite Element Biphasic Indentation of Cartilage: A Comparison of Experimental Indenter and Physiological Contact Geometries
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
5
), pp.
487
496
.
7.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1997, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
165
169
.
8.
Laursen
,
T. A.
, and
Simo
,
J. C.
, 1993, “
Continuum-Based Finite Element Formulation for the Implicit Solution of Multibody, Large Deformation Frictional Contact Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
(
20
), pp.
3451
3485
.
9.
Simo
,
J. C.
, and
Laursen
,
T. A.
, 1992, “
Augmented Lagrangian Treatment of Contact Problems Involving Friction
,”
Comput. Struct.
0045-7949,
42
(
1
), pp.
97
116
.
10.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
(
9
), pp.
1129
1148
.
11.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960,
The Classical Field Theories
,
Springer
,
Heidelberg
.
12.
Ün
,
K.
, and
Spilker
,
R. L.
, 2006, “
A Penetration-Based Finite Element Method for Hyperelastic 3D Biphasic Tissues in Contact. Part II: Finite Element Simulations
,”
J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
934
942
.
13.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, NY
.
14.
Curnier
,
A.
,
Qi-Chang
,
H.
, and
Zysset
,
P.
, 1994, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
(
1
), pp.
1
38
.
15.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
, 1994, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1347
1360
.
16.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
J. Biomech. Eng.
0148-0731,
111
(
1
), pp.
78
87
.
17.
Ateshian
,
G. A.
, 2009, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
0021-9290,
42
(
9
), pp.
1163
1176
.
18.
El-Abbasi
,
N.
, and
Bathe
,
K. -J.
, 2001, “
Stability and Patch Test Performance of Contact Discretizations and a New Solution Algorithm
,”
Comput. Struct.
0045-7949,
79
(
16
), pp.
1473
1486
.
19.
Ateshian
,
G. A.
, 2007, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
6
), pp.
423
445
.
20.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1145
1156
.
21.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
0021-9290,
30
(
11–12
), pp.
1157
1164
.
22.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1987, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
0021-9290,
20
(
7
), pp.
703
714
.
23.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
405
412
.
24.
Ateshian
,
G. A.
, and
Wang
,
H.
, 1995, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1341
1355
.
25.
Li
,
L. P.
, and
Herzog
,
W.
, 2006, “
Arthroscopic Evaluation of Cartilage Degeneration Using Indentation Testing—Influence of Indenter Geometry
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
4
), pp.
420
426
.
26.
Li
,
L. P.
,
Cheung
,
J. T.
, and
Herzog
,
W.
, 2009, “
Three-Dimensional Fibril-Reinforced Finite Element Model of Articular Cartilage
,”
Med. Biol. Eng. Comput.
0140-0118,
47
(
6
), pp.
607
615
.
27.
Ferguson
,
S. J.
,
Bryant
,
J. T.
,
Ganz
,
R.
, and
Ito
,
K.
, 2000, “
The Influence of the Acetabular Labrum on Hip Joint Cartilage Consolidation: A Poroelastic Finite Element Model
,”
J. Biomech.
0021-9290,
33
(
8
), pp.
953
960
.
28.
Ferguson
,
S. J.
,
Bryant
,
J. T.
,
Ganz
,
R.
, and
Ito
,
K.
, 2000, “
The Acetabular Labrum Seal: A Poroelastic Finite Element Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
(
6
), pp.
463
468
.
29.
Vadher
,
S. P.
,
Nayeb-Hashemi
,
H.
,
Canavan
,
P. K.
, and
Warner
,
G. M.
, 2006, “
Finite Element Modeling Following Partial Meniscectomy: Effect of Various Size of Resection
,”
Conf. Proc. IEEE End. Med. Biol. Soc.
0018-9219,
1
, pp.
2098
2101
.
30.
Dunbar
,
W. L.
, Jr.
,
Un
,
K.
,
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 2001, “
An Evaluation of Three-Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method
,”
J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
333
340
.
31.
Un
,
K.
, and
Spilker
,
R. L.
, 2006, “
A Penetration-Based Finite Element Method for Hyperelastic 3D Biphasic Tissues in Contact: Part 1—Derivation of Contact Boundary Conditions
,”
J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
124
130
.
32.
Maker
,
B. N.
, 1995, “
NIKE3D: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics
,”
Lawrence Livermore Lab
Technical Report No. UCRL-MA-105268.
You do not currently have access to this content.