To date, studies that have investigated the kinematics of spinal motion segments have largely focused on the contributions that the spinal ligaments play in the resultant motion patterns. However, the specific roles played by intervertebral disk components, in particular the annulus fibrosus, with respect to global motion is not well understood in spite of the relatively large literature base with respect to the local ex vivo mechanical properties of the tissue. The primary objective of this study was to implement the nonlinear and orthotropic mechanical behavior of the annulus fibrosus in a finite element model of an L4/L5 functional spinal unit in the form of a strain energy potential where the individual mechanical contributions of the ground substance and fibers were explicitly defined. The model was validated biomechanically under pure moment loading to ensure that the individual role of each soft tissue structure during load bearing was consistent throughout the physiologically relevant loading range. The fibrous network of the annulus was found to play critical roles in limiting the magnitude of the neutral zone and determining the stiffness of the elastic zone. Under flexion, lateral bending, and axial rotation, the collagen fibers were observed to bear the majority of the load applied to the annulus fibrosus, especially in radially peripheral regions where disk bulging occurred. For the first time, our data explicitly demonstrate that the exact fiber recruitment sequence is critically important for establishing the range of motion and neutral zone magnitudes of lumbar spinal motion segments.

1.
Panjabi
,
M. M.
, and
White
,
A. A.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott
,
Philadelphia, PA
.
2.
Panjabi
,
M. M.
, 1992, “
The Stabilizing System of the Spine. Part II. Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord.
0895-0385,
5
(
4
), pp.
390
397
.
3.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
, 1998, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
0940-6719,
7
(
2
), pp.
148
154
.
4.
Zander
,
T.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
, 2004, “
Influence of Ligament Stiffness on the Mechanical Behavior of a Functional Spinal Unit
,”
J. Biomech.
0021-9290,
37
(
7
), pp.
1107
1111
.
5.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1027
1036
.
6.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
256
263
.
7.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
, 2001, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
209
229
.
8.
Wagner
,
D. R.
, and
Lotz
,
J. C.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
22
, pp.
901
909
.
9.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Frohlich
,
M.
, 2004, “
Multi-Segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus
,”
Comput. Mech.
0178-7675,
34
, pp.
147
163
.
10.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
, 2009, “
The Effect of Mesh Refinement on the Predictions of Finite Element Models of Spine
,”
ASME Summer Bioengineering Conference
, Lake Tahoe, CA.
11.
Ueno
,
K.
, and
Liu
,
Y. K.
, 1987, “
A Three Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion
,”
ASME J. Biomech. Eng.
0148-0731,
109
(
3
), pp.
200
209
.
12.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2001, “
Parametric Finite Element Analysis of Vertebral Bodies Affected by Tumors
,”
J. Biomech.
0021-9290,
34
(
10
), pp.
1317
1324
.
13.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
434
438
.
14.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
, 2006, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2484
2490
.
15.
Dooris
,
A. P.
,
Goel
,
V. K.
,
Grosland
,
N. M.
,
Gilbertson
,
L. G.
, and
Wilder
,
D. G.
, 2001, “
Load Sharing Between Anterior and Posterior Elements in a Lumbar Motion Segment Implanted With an Artificial Disc
,”
Spine
0362-2436,
26
(
6
), pp.
E122
E129
.
16.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
,
New York
, pp.
1
32
.
17.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
0736-0266,
15
(
6
), pp.
814
819
.
18.
ABAQUS
, 2008,
Abaqus Theory Manual (ver. 6.8)
,
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
19.
Guerin
,
H. L.
, and
Elliott
,
D. M.
, 2007, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
0736-0266,
25
(
4
), pp.
508
516
.
20.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
West Sussex, UK
.
21.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2006, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
4
), pp.
337
344
.
22.
Noailly
,
J.
,
Lacroix
,
D.
, and
Planell
,
J. A.
, 2005, “
Finite Element Study of a Novel Intervertebral Disc Substitute
,”
Spine
0362-2436,
30
(
20
), pp.
2257
2264
.
23.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1996, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
0362-2436,
21
(
22
), pp.
2570
2579
.
24.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2007, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
271
280
.
25.
Wilke
,
H. J.
,
Rohlmann
,
A.
,
Neller
,
S.
,
Schultheiss
,
M.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Claes
,
L. E.
, 2001, “
Is it Possible to Simulate Physiologic Loading Conditions by Applying Pure Moments? A Comparison of In Vivo and In Vitro Load Components in an Internal Fixator
,”
Spine
0362-2436,
26
(
6
), pp.
636
642
.
26.
Heuer
,
F.
,
Schmidt
,
H.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2007, “
Stepwise Reduction of Functional Spinal Structures Increase Vertebral Translation and Intradiscal Pressure
,”
J. Biomech.
0021-9290,
40
(
4
), pp.
795
803
.
27.
Ayturk
,
U. M.
, 2007, “
Development and Validation of a Three Dimensional High Resolution Nonlinear Finite Element Model of an L3/L4 Functional Spinal Unit
,” MS thesis, Colorado State University, Fort Collins, CO.
28.
Adams
,
M.
,
Bogduk
,
N.
,
Burton
,
K.
, and
Dolan
,
P.
, 2002,
The Biomechanics of Back Pain
,
Churchill
,
London, UK
.
29.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
, 1999, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
0362-2436,
24
(
8
), pp.
755
762
.
30.
Thompson
,
R. E.
,
Barker
,
T. M.
, and
Pearcy
,
M. J.
, 2003, “
Defining the Neutral Zone of Sheep Intervertebral Joints During Dynamic Motions: An In Vitro Study
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
2
), pp.
89
98
.
31.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
, 1996, “
“Stress” Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration
,”
J. Bone Joint Surg. Br.
0301-620X,
78
(
6
), pp.
965
972
.
32.
Lotz
,
J. C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Duncan
,
N. A.
, and
Liebenberg
,
E.
, 1998, “
Compression-Induced Degeneration of the Intervertebral Disc: An In Vivo Mouse Model and Finite-Element Study
,”
Spine
0362-2436,
23
(
23
), pp.
2493
2506
.
33.
Seroussi
,
R. E.
,
Krag
,
M. H.
,
Muller
,
D. L.
, and
Pope
,
M. H.
, 1989, “
Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads
,”
J. Orthop. Res.
0736-0266,
7
(
1
), pp.
122
131
.
34.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
, 1994, “
Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine
,”
Spine
0362-2436,
19
(
12
), pp.
1371
1380
.
35.
Hurschler
,
C.
,
Loitz-Ramage
,
B.
, and
Vanderby
,
R.
, Jr.
, 1997, “
A Structurally Based Stress-Stretch Relationship for Tendon and Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
392
399
.
36.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
, 2002, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
72
77
.
37.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
(
1-2
), pp.
107
128
.
38.
Heuer
,
F.
,
Schmidt
,
H.
, and
Wilke
,
H. J.
, 2008, “
The Relation Between Intervertebral Disc Bulging and Annular Fiber Associated Strain for Simple and Complex Loading
,”
J. Biomech.
0021-9290,
41
(
5
), pp.
1086
1094
.
39.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2006, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1410
1418
.
40.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
, 2005, “
Single-Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
(
3
), pp.
125
140
.
You do not currently have access to this content.